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Abstract

We present the quadratic and cubic normal forms
of a nonlinear control system around an equilibrium
point. These are the normal forms under change of
state coordinates and invertible state feedback. The
system need not be linearly controllable. A control
bifurcation of a nonlinear system occurs when its
linear approximation loses stabilizability. We study
some important control bifurcations, the analogues
of the classical fold, transcritical and Hopf bifurcations.
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1 Introduction

The theory of normal forms and bifurcations of dynam-
ical systems is well-known [8]. One considers a smooth
vector fleld

i fla,w)
depending on a parameter y. The equilibria of the vec-
tor field are those x., p. such that f(x.,p.) = 0. Per-
haps the most important property of an equilibrium
iz its stability. In the first approximation this is de-
termined by the stability of its linear approximation
around e, e,

(1.1)

. B af
dx B (Ze, e 0.

(1.2)

It all the eigenvalues of %ﬁ(me,ue) lie in the open left
half plane then the system (1.1) is locally asymptoti-
cally stable around the x¢, ge. If one or more eigen-
values lie in the open right half plane then the system
(1.1) is unstable. If all the eigenvalues lie in the closed
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left half plane but some are on the imaginary axis then
the first approximation is not decisive, the system (1.1)
may be locally asymptotically stable or unstable, de-
pending on higher degree terms.

The character of the equilibria can change at a crit-
ical value of the parameter, perhaps two branches of
equilibria cross or a branch looses or gains stability.
Such a state and parameter is called a bifurcation point
of the parametrized vector field. A local bifurcation
takes place at a parameter value where the system loses
structural stability with respect to parameter varia-
tions, i.e. the phase portrait around the equilibrium at
the critical parameter value is not locally topologically
conjugate to the phase portraits around the equilibria
at nearby parameter values. If the local linearizations
at two equilibria have no poles on the imaginary axis
and the same numbers of strictly stable and strictly
unstable poles then the local phase portraits are topo-
logically conjugate. Therefore a bifurcation is charac-
terized mathematically by one or more eigenvalues of
the linearized system crossing the imaginary axis. We
restrict our discussion to local bifurcations which we
refer to as bifurcations.

A standard approach to analyzing the behaviour of the
parametrized ODE (1.1) around a bifurcation point is
to treat the parameter as an additional state variable
with dynamics 1 = 0 and to compute the center mani-
fold of the extended dynamics through the bifurcation
point and the dynamics restricted to this manifold [8].
The center manifold is an invariant manifold of the dif-
ferential equation which is tangent at the bifurcation
point to the eigenspace of the neutrally stable eigen-
values. In practice, one does not compute the center
manifold and its dynamics exactly, in most cases of in-
terest, an approximation of degree two or three suffices.
If the other eigenvalues are in the open left half plane,
then this part of the dynamics is locally asymptoti-
cally stable and therefore can be neglected in a local
stability analysis around the bifurcation point. The bi-
furcation point will be locally asymptotically stable for
the complete dynamics iff the dynamics on the center



manifold is locally asymptotically stable. Of course, at
some nearby equilibria the dynamics may be unstable.

The next step is to compute the Poincaré normal form
of the center manifold dynamics. From its normal form
the bifurcation is recognized and understood. Familiar
examples are the fold (or saddle node), the transcrit-
ical and the Hopf bifurcations. The first two of these
depend on the normal form of degree two and the last
one depends on the normal form of degree three. The
fold and Hopf bifurcations are the only ones that are
generic and of codimension 1, i. e., depend on a single
parameter, so these are the most important.

The study of bifurcations of differential equations with
control was initiated by Abed and Fu, [1], [2]. They
considered systems where the parameter is distinct
from the control

T = flz,u,p) (1.3)

They assumed that the uncontrolled system v = 0 un-
dergoes a bifurcation at a critical value of the parame-
ter po and they studied the stabilizability of the system
by quadratic and cubic feedbacks.

Kang, {5] studied the degree two normal forms and bi-
furcations of control systems with (1.3) and without a
parameter (1.4). A control system does not need a pa-
rameter to bifurcate, the control can play the same role.
The equilibria of a controlled differential equation,

T = f(z,u) (1.4)

are those values of z., ue such that f(z.,u.) = 0. The
cquilibria are conveniently parametrized by u or one
of the state varaibles. Two key facts differentiate bi-
furcations of a control system (1.4) from that of a
parametrized system (1.1). The first is that for the
latter the structural stability of the equilibria is the
crucial issue but for the former the stabilizability by
state feedback is the crucial issue. A control system
(1.4) is linearly controllable (linearly stabilizable) at
2. e if the local linear approximation
or = %(xe,ue)&c + %(we,ue)éu

is controllable (stabilizable). If the linear approxima-
tion is stabilizable, then the nonlinear system is locally
stabilizable. If the linear approximation is not stabi-
lizable, then the nonlinear system may or may not be
locally stabilizable, depending on higher degree terms.
A control bifurcation of (1.4) takes place at an equilib-
rium where the linear approximation loses stabilizabil-
ity. Notice that this is different from the bifurcation
of a parametrized system (1.1) which take place at an
equilibrium where there is a loss of structural stability
with respect to parameter variations. Frequently this
loss of structural stability is caused by a loss of linear

stability, one or more eigevalues of (1.2) crossing the
imaginary axis. To empahsize this distinction we shall
refer to the latter as a classtcal bifurcation.

The other difference between control and classical bi-
furcations is that when bringing the control system
into normal form, a different group of transformations
is used. For classical bifurcations, we use parameter
dependent change of state coordinates and change of
parameter coordinates but for control bifurcations we
use change of state coordinates and state dependent
change of control coordinates (invertible state feed-
back) to simplify the dynamics.

After reviewing Kang's work on the normal forms of de-
gree two control systems, we extend it to degree three
normal forms. Similar results for discrete time sys-
tems can be found in [3], [7]. Kang studied the control
theoretic analogue of the transcritical bifurcation. We
extend this to a study of the control theoretic ana-
logues of the fold and the Hopf bifurcations. We will
study the stabilizability of these around the bifurcation
point. We will also discuss the parametrized stabiliz-
ability of the parametrized family to nearby equilibria
by a parametrized control law. Because of space limi-
tations, the proofs will appear elsewhere [6].

2 Normal Forms

Consider a smooth (C*) control system (1.4) where z is
n dimensional, u is one dimensional and f(0,0) = 0. It
is well known that by linear change of state coordinates
and linear state feedback, the system can be brought
to the form

T A 0 T 0
RS
f1[2]($1,I2,U) } + [ f1[31(117$27u) }

f2[2]($1,x2,u) f2[3](.'131,1‘2,u)

+O($1,I2,u)4 (25)

where z1, 22 are ny, ny dimensional, n1 + ny = n, A4;
is in Jordan form, Ag, By are in controller (Brunovsky)
form and fi[d] (z1, 2, u) is a vector field which is a homo-
geneous polynomial of degree d in its arguments. The
linear change of coordinates that brings A; to Jordan
form may be complex.

A pair Ay, B> is in controller form if

01 0 ... 0 0

0 0 1 ... 0 0
A2: By =

0 0 O 1 0

0 0 O 0 1



The following theorem is a slight extension of Kang [5].

Theorem 2.1 There exist a quadratic change of coor-
dinates and a quadratic feedback

HEREE

vo= u-a[l]

P21, 20) ]

¢[22] (-?7171‘2)
(331,12,U)

which transforms the system (2.5) into the quadratic
normal form

Zy B A1 0 <1 0
{Q} - [o A || = || By |V 20
[2:0] 71:1] [0;2]
B A
0 + 0 + fs
73]
+ fig] +O(21,22,1))
where f}"“dﬂ = ﬂ[d“d2](zl;zg,v) denotes a polyno-

mial vector field homogeneous of degree dy in z; and
of degree do in z3,v. The vector field f1[2;0] s in the
quadratic normal form of Poincaré [8],

_ Jjk i
= E B;" el 215 21k

A=A+ Ak

ol (2.7)

where €} is the i*" unit vector in zr space and z; 1S
the i*" component of z,. The other vector fields are as
follows.

] N1

}:} : Jjl i
Vi €1 21,5 %21

i=1 j=1

s = (2.8)

ny ng+1
33 Lt L2
Z Z UCHESY
i=1 j=1
neo—1 ng+1
33 A L2
YooY ez,

i=1 j=i+2

= (2.9)

7 (2.10)

where  for notational convenience we have defined
“ynye1 = v. The vector field, fi%%
controller form [4].

, 18 in quadratic

The following is theorem is new.

Theorem 2.2 There exist a quadratic and cubic
change of coordinates and a quadratic and cubic feed-

back
[} B {x op(@1,72)
=2 T2 651 (1, 22)

T —

221, 20)

} - { 95 (21,%2)
(2] (3]

u—ay (T, T2, u) — a5 (X1, T, u)

|

which transforms the system (2.5) into the cubic nor-

mal form
21 _ [ A1 0 Z1 0
HEREPAIE AL
[ 712 7l 7[0;2
L [ g g
0 + 0 4+ foa
[ ~fa. ~[. ~1. ~10-
. fl[s,o] 4 1[2,1] n fl[l,z] I f1[0,3}
0 + 0 + ~2[2§1] + fz[o;iﬂ
+ O(Zl,ZQ,U)4

where the quadratic part is as in the previous theo-

rem. Furthermore fi°°)
of Poincaré [8],

s wn the cubic normal form

f1[3;0] = ,Bl-jkl eli Zl,j Zl,k 211(212)

2

Ai=Xj+ A+ A

The other cubic vector fields are as follows.

n1 ni1 M

~1[2;1] — ZZZ,YMI ei o1y 7ia 72a(2.13)
i=1 j=1k=j
ny ni ne+l

Fl1:2 ikk

P = S e n, 2 (214)
i=1 j=1 k=1
n1 ng na+l

710:3 ikk

Y= DD D ez 23, (215)
i=1 j=1 k=
nz—1 ny mn2+l

7121 ek

fQ{ I = Z Z Z G ey 21,5 Z%k (2.16)
i=1 j=1 k—i+2
na—1 no+1

0:3 kk

2 = Z Z Zﬁj eb 2 23 . (2.17)

i=1 k=i+2j=1

These theorems hold even when some of the eigenval-
ues of Ay are not real. The linear change of coordinates
that diagonalizes A; is complex and the correspond-
ing coefficients in the normal forms are complex. The
real dimension of the parameter space is unchanged as
the complex coordinates come in conjugate pairs hence
some coefficients are required to be complex conjugates
of each other.

3 Control Bifurcations

The‘ constants in the above normal forms
i, 37 ,..‘,ngkk are called moduli and there are

a lot more than are needed to understand the simplest
types of bifurcations that are possible. Recall that
in the bifurcation theory of a parametrized system of
ODEs, the interesting part of the dynamics is that
restricted to the center manifold. This leads to a
great reduction in the dimension of the ODE that

(2.11)



must be studied. A similar fact holds true when
studying control bifurcations. In most applications
one will ultimately use state feedback in an attempt
to stabilize the system so the coordinates that are
linearly stabilizable can be ignored to a large extent.
It there are modes which are neutrally stable and are
not linearly stabilizable, then the particular choice of
feedback will influence the shape of center manifold
of the closed loop system and the dynamics thereon.
It might be possible to achieve asymptotically stable
center manifold dynamics by the proper choice of
feedback although it will not be exponentially stable.
One can also reduce the number of moduli by consid-
cring weaker forms of equivalence than smooth change
of coordinates and invertible smooth feedback. We
now discuss some important bifurcations of control
svstems. Some of this has already been established by
Kang.

3.1 Fold Control Bifurcation

Just as with classical bifurctions, the simplest control
bifurcation is the fold. This control bifurcation has not
been studied before. The uncontrollable part is one
dimensional and unstable, n; = 1, A; > 0. Because
the linearly controllable part of the quadratic normal
form (2.6) is in Brunovsky form, the equilibria z., v.
are most conveniently parametrized by p = z¢31. The
cquilibria z. (), ve(1t) are given by

Zen = —pPATISN 4 O(p)®
Ze2.1 H
zews = O(p)? i=2,...,n9+ 1.

The local linearization around z., v, is

4] - ([t ow) 2]

(8] om0

where Z = 2z — z(u),? = v — ve(u) and A =
C2018 0 ..o 0],

Srie e

[\ —

If the transversality condition 61! # 0 is satisfied then
the system is linearly controllable hence stabilizable
about any equilibrium except u = 0. Consider a
parametrized family of feedbacks v = k(z,u) of the
form

U= Ki(pa + Ko(p)z. (3.18)

Ideally one would like to find a continuous family of
feedbacks that makes the family of equilibria asymptot-
ically stable, i. e., for each small yu, the closed loop sys-
tem £ = f(z,K(z, 1)) is asymptotically stable to ze(u).
The lowest degree terms of more general smooth feed-
backs will be like (3.18).

Clearly the the z; subsystem is stabilizable for all
by proper choice of K2 and this gain can be chosen
independent of x. The question is can we find K (u)
which stabilizes the z; coordinate for all small |u|.

Since the linear approximations are stabilizable for
@ # 0, it is certainly possible to find a stabilizing
feedback at each such u. The linear approximation at
¢ = 0 has an uncontrollable, unstable mode so it is not
possible to stabilize it. But is it possible to stabilize
the approximations for y # 0 with a feedback that is
bounded through g = 07 The answer is no for systems
with a fold control bifurcation. For any bounded feed-
back, the closed loop system will be unstable in some
neighborhood of p = 0.

The closed loop linear approximation

2] _ (] A+t pA 2
[ A ] = ([ BoKy  As+ByK, | TOW

is clearly unstable at p = 0 since 4; > 0. Furthermore
if the feedback v = Ky(u)z, stabilizes the zo subsys-
tem then A, is a simple positive root of the character-
istic polynomial of the closed loop system when p = 0.
Hence there is a positive root of the characteristic poly-
nomial for small |yu]|.

dar
[l

[sv]

By using higher and higher gain, it is possible to sta-
bilize the system closer and closer to p = 0. But if the
feedback (3.18) is continuous, at best it will stabilize
only some small but not too small ¢ > 0 or only some
small but not too small ¢ < 0. If a smooth family
of feedbacks does stabilize the system for some small
@ > 0, the parametrized closed loop system generi-
cally undergoes a classical fold bifurcation (also called
a saddle-node bifurcation) at some smaller u > 0.

We illustrate this with a simple example in normal form

21 = 21—23

ZQ‘—"U.

The equilibria are z.; = p?, 2.2 = p,v, = 0. Under
the feedback v = Kq(u)Z; + Ka(u)Ze, the closed loop
linear approximation is

HER P

] | Kiw) Ka(w) || 2

where Z = z — z¢(p), ¥ = v — v.(u). This is asymptoti-
cally stable iff the trace is negative and the determinant
is positive, which yields the inequalities —2uK;(u) <
Ko(p) < —1. Clearly there is no bounded K;(u) that
satisfies these for all small |p|.

If we choose K7 = 10 and K5 = —2 then the closed loop
linear approximation is stable for 4 > 0.1 and unstable
for p < 0.1. It undergoes a fold bifurcation at u = 0.1.
If we choose K; = —10 and Ko = —2 then the closed



loop linear approximation is stable for y < —0.1 and
unstable for 4 > —0.1. It undergoes a fold bifurcation
at = —0.1.

To see this, consider the closed loop nonlinear system
under the feedback with K; = 10 and Ky = -2 in
coordinates centered at the the bifurcation, z; = z; —
0.01. Zo = 29 — 01 ,l—l, = U — 01,

[

1 o= 25— 0.2z — 72
2 = 10z — 2% — 1032

(RiR

It is convenient to reparametrize by v = @2 > 0. The
center manifold is given by

2y = 100 + 57 + 250007 — 10000z, + 12522 + O(z,, v)*
and the center manifold dynamics is
21 = 2w — 6000° + 300wz, — 50027 + O(zy, v)°
or in the variables 2; = V50(2; — 3v), ¥ = 2v — 15002,
5 =0 - 524 0(3,0),

the familiar form of a fold bifurcation.

3.2 Transcritical Control Bifurcation

Kang [5] studied this control bifurcation but not under
this name. This is the degenerate case of the above
where again n; = 1 but Ay = 0. Hence this control
bifurcation is not generic. Kang showed that the local
behaviour is determined by the roots of quadratic form

112 11 1.2
1211+ 211220+ 81725, =0

If this form is positive or negative definite, then there is
ounly an isolated equilibrium which is unstabilizable. If
1t is indefinite but not degenerate, there are two curves
of equilibria which cross. For example, suppose 3] =
14! =0,6]! = —1 and all the other nonlinear terms
are zero. Then the equilibria are

+

~el.l tu
Ze21 = M
Ze2., = 0 i:2,...,n2+1.

Let e (), ve (1) be one smooth curve of equilibria, e.g.,
z1. the local linearizations around it are

5] - ([ ] ow) (2]
(8]0

where £ = 2 —z(u), ¥ = v—ve(u) and A = [-20 ... 0].

e B

‘The linear approximation of the closed loop dynamics
under a smooth feedback (3.18) is

MNP ORe

2} | 21
Ay + BoK, ] 0w ) [ %

[REANEIN

|

which is neutrally stable at u = 0. If the feedback
stabilizes the Z subsystem when u = 0 then the de-
terminant of the full system matrix changes sign at
¢ = 0 so generically the closed loop system under-
goes a fold bifurcation. Under quadratic feedback
v = Ki(2? — %) + Ka23 the system will undergo a
transcritical bifurcation if Ay 4+ By K5 is Hurwitz.

3.3 Hopf Control Bifurcation
This control bifurcation has not been studied before.
The uncontrollable modes are a nonzero complex con-

jugate pair,
A0
ShICRY

where A = v+ iw, A = v — iw, w # 0. The equilibria
ze(p), ve(pt) are given by

Zel 1 2 -1 | 61t 3
. = —uiAy sit |t O(u)
<el,2 5
Ze2,1 = M
Ze2i = O(,U)2 1=2,...,n+1

where 81, 611 is a complex conjugate pair.
1 Y2

The local linearization around z., v, is
1 B A1+ ul pA 2 21
2] = (T Jrew) [5]
0 2\ ~
+<[ B, ] + O(u) )v

where Z = z — z. (i), U =v — v(pu) and

11 21 11
v v 260 0 .00
F—[ I 7221}’ A—[zagl 0 ... 0

where {1, 43! and ~#!

pairs.

,7221 are complex conjugate

If the transversality condition A # 0, is satisfied then
the system is linearly controllable except when y = 0.
If v < 0 then the system is stabilizable about any equi-
librium but if v > 0 then the system is not stabilizable
when p = 0. The case v > 0 is called a Hopf control
bifurcation. We distinguish two subcases, v > 0 and
v =20.

If v > 0 then it requires larger and larger gain to sta-
bilize the system closer and closer to u = 0. But if
the feedback (3.18) is continuous it will stabilize only
for some small g > 0 or for some small u < 0 but not
both. At p = 0 the poles of the closed loop system
are A\, A and the poles of Ay + B3 K5(0). The latter
can be made stable but the former are unstable. If the
feedback is bounded then as yu — 0 the poles coverge
to these. The system is controllable for i # 0 so the
poles can be placed arbitrarily by feedback. The poles
associated primarily with the z; subsystem can be kept



stable but the two poles associated primarily with the
2y subsystem will cross into the right half plane at some
small value(s) of u. Depending on the choice of feed-
back, they will cross one at a time as real poles, cross
together through 0 or cross together as a nonzero com-
plex conjugate pair. If they cross separately as real
poles then generically the closed loop system under-
goes a fold bifurcation as the first pole crosses. If they
cross together as a nonzero complex conjugate pair then
generically the system undergoes a Hopf bifurcation. If
they cross together through zero the situation can be
quite complicated and will not be discussed here.

If v = 0 and the feedback (3.18) is continuous then
generically the system undergoes a Hopf bifurcation at
i = 0. We illustrate this with an example.

. 2

ri1 = —I12—T)
. 2

Ti,2 = T — Ty
j)g = u.

The equilibria are

Ten = p°
Le1,2 = —.U2
Tez = M
ue = 0

and the linear approximations are

Ty, = —T12—2udy
Tip = T11— 2k
To = @

where 71 = 211 — p?, T12 = 210+ p? Fo = 19 —
jt. u = u. The linear approximations are controllable
except at u = 0.

We choose the feedback v = 10Z 1 + 5% 2 — 3Z2 which
place the poles at =144, —1 when u = 0.1. Near u = 0
the poles of the closed loop linear approximations are

s = =3+ 10+ O(u)?
s = —Budi+O(u)? (3.19)
The closed loop dynamics is
(if1_1 = —I1,2— CE%
F1y o= T - T3
T = 10x1,1 + 5712 — 322 + 3 — 5u2.

The first Lyapunov coefficient (see (8], (10.50)) is
[,(0) = —=70.11. This and (3.19) imply that the closed
loop system undergoes a supercritical Hopf bifurction
at = 0. For small p > 0 the origin is locally expo-
nentially stable. For small g < 0 the origin is unstable
but there is a locally asymptotically stable limit cycle
nearby. At p = 0 the origin is locally asymptotically
stable but not locally exponentially stable.

4 Conclusions

We have presented the normal form to degree 3 of a
smooth control system around an equilibrium point un-
der the group of smooth coordinate changes and in-
vertible smooth feedback. From these normal forms we
were able to identify the simplest control bifurcations,
the fold control bifurcation, the transcritcal control bi-
furcation and the Hopf control bifurcation. We empha-
size the distinction between a control bifurcation and a
classical bifurcation. A control bifurcation occurs at an
equilibrium where the control system loses linear sta-
bilizability. A classical bifurcation occurs at an equi-
librium where the dynamical system loses structural
stability with respect to parameter variations. Bifur-
cation control is different from a control bifurcation.
The former refers to the modification by feedback of
a classical bifurcation of the v = 0 system. Of course
these concepts are closely related and when a system
with a control bifurcation is modified by smooth feed-
back the result is a classical bifurcation.
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