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1. INTRODUCTION

The Poincaré normal form is known to be useful
in the bifurcation analysis of dynamical systems.
Kang and Krener (1992) initiated the extension of
Poincaré normal form theory to nonlinear control
systems. where they considered quadratic con-
troller normal forms of linearly controllable non-
linear control systems with a single input. The
controller normal form has been proved useful in
the analysis of control bifurcations (see Chang et
al (2000),Kang (1998). and Krener et al. (2001)).
Kang (1996) extended Kang and Krener (1992) by
deriving the controller normal form of arbitrary
degree of linearly controllable nonlinear control
svsterns with a single input. which was further
extended in Tall and Respondek (2000), refining
the normal form in Kang (1996) by using a larger
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transformation group. On the other hand, Chang
et al. (2000) and Krener et al. (2001) extended
Kang and Krener (1992) by deriving the con-
troller normal form up to degree three of linearly
uncontrollable nonlinear control systems with a
single input. In this paper, we extend Chang et
al. (2000), Kang (1996) and Tall and Respondek
(2000) by deriving the controller normal form
and the dual normal form of arbitrary degree of
linearly uncontrollable nonlinear control systems
with a single input and finding a set of invariants
which help compute the normal form.

2. MAIN RESULTS

Consider a smooth nonlinear control system

&= f(x,u) (2.1)

where x is n dimensional, % is one dimensional
and f(0,0) = 0. It is well known that by a linear
change of state coordinates, linear state feedback



and Taylor series expansion, the system can be
brought to the form
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fi (e, x9. 1)
+
AZ::Z [fék] (ry1.x9.u)
+ O(z . 19, u)*H! (2.2)

where 1y, 19 are 1y, ng dimensional. 1) +ng = n,
Ay is in Jordan form, As.Bs are in controller
(Brunovsky) form and fi[kl(.’l,'l..’lfg.’ll,) is an n; di-
mensional vector-valued homogeneous polynomial
of degree k in its arguments. The linear change of
coordinates that brings A; to Jordan form may
be complex. in which case some of the coordinates
11 are complex. The complex (()()rdinates come

in conjugate pairs. The corresponding f1 .S are
complex-valued and come in conjugate pairs.

A pair As. Dy is in controller form if

01 0 ...0 0
0o 1 ...0 0
00 0 ... 1 0
000 ...0 1

Theorem 2.1. Consider a smooth (C°) control
system (2.2) where A is in Jordan form and the
input is scalar. There exist a change of coordinates
and a feedback of the form

1':'11.*2 W (2, 2g.0) (2.5)

k=2

which transform the system (2.2) into the normal
form
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+Xd: ~1[H.P(Z£)k+ﬂk}'o(zbzzs?’)
fé ](21-22-1’)

k=2
+ O(z1. 29 v)4T!

where f *1.P 45 in the Poincaré normal form of
degree k (see Arnold (1983)) and the other vector
fields are as follows:
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21 22,1
n2+1
k—2
+3 Qe )AL @D
Jj=1
ng—1 na+1
k-2
= Z Z e2viR£j ](zl,z;)vl,... -Zz,j)zg’j.
i=l j=i+2
(2.8)
th

where e;, is the r

Pi[m](-), Qi’;‘]() and RZ"}() are arbitrary homoge-
neous polynomials of degree m., and for notational

convenience we have defined 23 5,41 = v.

unit vector in 2z; space,

In particular, when A, is diagonal, the Poincaré
normal form f*1'P(z;) is given by

7

J
= E €y E B Zl,]x TRk

=1 1< <<k <m
X o Mgy, = A

(2.9)

Proof. First notice that the following d** order
transformation with d > 1

[2} - [2} - [Zggiz;] (2.10)

v=u—al(zy, z, ) (2.11)

does not change the terms of degree less than d.
Without loss of generality, we may assume that
the given system is in the normal form up to
degree (d — 1). Consider two systems in the same
normal forms up to degree (d — 1) as follows:

B0 Al )]

-1 [d]
(z1, %9, 1) iz, 22, 4)
+,§—:=2 [ 2[ ](ml,.tg,u)] * [fi[,d](ml,zg.u)}

(2.13)

(8 4]z [2)-

+Z [f}klgmzzz,v;jl f—{d](zl,zg,w)]

[Wm%m
+ O(zl.zg.v)d+1

+

where dimz; = dimz;, ¢ =1,2.

Define the two vector spaces U and V as follows.
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where (v')» 4 and ¢ J, are n;-dimensional vector val-
ued h()m()gene()us polynomials of degree d in their
arguments with ¢+ = 1,2 and ol is a homoge-
neous polynomial of degree d. Define a linear map
L:U—-Vhy

. . e
L. o), = Ai¢§dl(;) _ 99, (2)A121
321
ol 96\
S ez~ S (2) B

+B;al (2. v) (2.14)
for i = 1.2. One can see that the transformation
in (2.10) and (2.11) transforms the system (2.12)
to the system (2.13) iff

fihi(zoe) = fiU200) + Lo, al) (2, v)
where
. _ rldl
.fld‘ = fl{q] f[d] = j;%d] .
2 2
Let p : V — V/ImL be the quotient map. To

find a normal form is to find a subspace W of
V such that W is isomorphic to V/Im L via p.
Namely. it boils down to finding a subspace W
of V such that V = W & Im L. In this proof, we
dec ()111[)%(‘ the spaces U, V and the map L as
(/ =@l U V=0l V,and L= @‘2:1[41‘ with

= Llli’ U; — V;, in order to decompose the
problern of deriving the normal forms into three
subproblems.

1. f{(”'l) :  Define the two vector spaces U
and V) by Uy, = {Zzlllel 1(}517(2:1)} and V; =
{Z:,:llel.i. 1[(1,‘(:1)} Then L, := Lly, : Uy — V)

becomes

Li(¢1) = A1¢1(21) — YA1z)

which is the same as the Lie derivative (—1)L 4, in
Arnold (1983. p. 179). Hence, one can transform
any element ¢ of U, into a Poincaré normal form
of degree d. In particular, when A is diagonal, the
Poincaré normal form of arbitrary degree k > 2 is
given by (2.9) (see Arnold (1983) for more detail
on the Poincaré normal forms).

2. f idl'c : Define the two vector spaces Up and Vo
by

ny
Uy = {zemﬂ(zl. )| deggdl > 1} ,
i=1

{Zel ifi3(21, 29, 0) | dego £ > 1}

where deg, is the map which assigns to a polyno-
mial in (21, z9,v) the lowest power of (25, v) in the
polynomial. Then Lg := L|y, : Uz — V3 becomes

La(61) = A161(2) — 2 () Arzn - ‘Z—f;( )As2,
?;22( YBav (2.15)

for ¢y € Us. We claim ker Ly = {0}. Suppose
¢1 € ker L. It satisfies

A1¢1(z ( YArz1 — —(Z)Azzz
aqs )
D23 z)Bov =0 (2.16)

Recall the special forms of A; and By in (2.3).
Since only the term 2""—(z)Bgv in (2.16) de-

pends on v, it follows that —2@— 0. Hence
¢1 does not depend on 29 ,,. Wlth this result

in mind, notice that the term 5'21(2 Aszg is the

only term in (2.16) which dependq on zag,. It

follows (.)2—64"— =
2.mp-1

?%%L[ = 0 for i = 1,...,n2, which implies ¢; = 0
since degy¢1 > 1. Hence ker Ly = {0}.

0. Inductively, one can show

Define a subspace W of V5 by

1
Wy = {Z e [P,-[d_”(zl)zz,l
i=1

na+1

+ 3 Q5
j=1

which is exactly the normal form in (2.7). We
claim Vo, = Wy @ Im L,. First, we check the
dimension condition. One can compute

dimUs =ny [(""‘Z— 1) _ (nl +(;i—1>] ’
dimVy = ny [(7"'(;"1) _ (nl +dd— 1)] ,

dimWy =n, (n +d-1 )

21,2214 ’Zz‘j)"'g,j]

d-1

where n = mn; + mg. Since kerLs = {0},
dimIm Ly = dim U;. Hence dimV, = dimW; +
dim Im L4 since

n+d\ _(n+d-1 n+d-1
d )= d tUa-1 )

Second, we show Wo NImL, = {0}. Suppose
f € WonlmL,. Then there exists ¢; € Us such



that [ = Lo(@1). We will use the similar argument
to the one used in showing kerL, = {0}. Namely.
we inductively compare the terins dependent on
. 52, .222 In La(¢y) and f € Wi, The
monolnm]s dependent on v in (2.15) are in 7)-4’—1B21'
and the degree of v in the monomials is 1 whereds
the degree of v in the monomials dependent on v

in f e Wyis 2or 4. It follows that %— = ).

Inductively. one can get Ffﬂ- =0for1<j<ng.
Since degqo@) > 1. it follows that ¢; = 0 and thus
f = 0. This proves Wy N Im Lo = {0}.

- f fl9 . Define the two vector spaces Uz and V3
h\

Uy = { (Z e2_,-q')£_,(ﬁ(zl. z2), oz, 32,1,7)) } .
i=1

ny
i‘ E 6212i~1e~<") .

where o4 (2. 2. ¢) is a homogeneous polynomial
of degree d in (21, z9.v) in the definition of Us.
The dimensions of Us and V3 are

dim Uy = ny (" +((§ a 1) + ("j;d)(ll?)

dim Vi == ny ( " j]_ d)

where 1 = n, 4+ ny. Then the map Ly := Liy, :
U — V3 becomes

(2.18)

, 0
Liy(@a. o) =A2¢2(2) + Bea(z.v) — aq:,l (z)A121
¢ O¢a
(e — S By (219)

for ¢o € Uz. We now compute the dimension of
ker Ls. Suppose (2. ) € kerLy with ¢a(zy, 25) =
SN2 eithoi(z1. 22). It satisfies

Oda
A2¢2( )+Bg(¥(2 I) 2, ( )A1~1
gy O _
h (,)22 (~)A2~2 - ?)——( )Bzﬂ 0. (220)

Recall the structure of Ay and Bs in (2.3). The
monomials dependent on v in the first (no—1) rows
of the LHS of (2.20) are in the first (ng—1) rows
of g—‘ff(:)Bzv. It follows %": =0forl <i<
ny — 1. Namely. ¢, ;s are independent of 2 ,,, for
1 <4 < ny — 1. Now. the monomials dependent
on zp.,, in the first (ng —2) rows of the LHS of

(2.20) are in 7)-?—( JA2z2. Hence, ﬁg‘é—:;—l =0 for

1 <i < ny—2. Inductively. one gets

0d2 .4
(‘)lfz‘v,‘

=0, VI<i<j<ng. (2.21)

In particular,

Then ¢2,; belongs to the space D of homogeneous
polynomials of degree d in (23, 25,). Also notice
that once we choose ¢g; from D, the remaining
terms (@z2,2.- .. , Po.ny. @) = Asda(z) + Baa(z,v)
are uniquely determined so that (2.20) is satisfied.
Hence kerLg is isomorphic to the space D, which
implies

dimker Ly = (”1; d) . (2.22)
Define a subspace W3 of V3 by
ng—1 na+1
Wy= Z Z e2iR£J—2](z1322,1~, o 225)75
i=1 j=i+2

which is exactly the normal form in (2.8). The
dimension of Wj is given by

dim Wy = ("1;(1) - (TH—Z— 1)

n +dI 1) (2.23)

+(n2-1)( ,d—

where n = n; +ny. We claim Vg = W3@ImmLs. The
dimension condition, dimV3 = dimW3+dim Im/Ls,
can be easily checked by (2.17), (2.18), (2.22),
(2.23) and the formula, dimU; = dimkerLs +
dimImL;. We now show W3 N ImLz; = {0}.
Suppose there exists (¢2,¢) € Us such that
Ls(¢p2,) € WanImL. This can be written as

A2 6(2) + Bro(z.) — 52 ()i

‘ij( )Azz — ——(z)Bw
na—1 no+tl
= Z Z e ;R 1(215221---‘ Z2,])22]
i=1 j=i+2
(2.24)

for some Rl.j._z] 's. Compare the terms dependent
on v in the first (n2 —1) rows on both sides of
(2.24). Those terms on the LHS of (2.24) are in the
first (ng—1) rows of %‘zizz(z)Bgv and they depend
on v linearly, whereas those terms on the RHS
of (2.24) depend on v? or v*. Hence, aa—::— =0
for 1 < ¢ € ns — 1. As in the computation of
the dimension of ker Lz, one can inductively get
(2.21), which with (2.19) implies that L3(¢2, ) is
of the form

na i+1

) =23 ekt

i=1 j=1

Ly(¢g. )

¥ ~1,Z21 c e 225)s



wiich belongs to Wy iff Ly(¢e.)=0. Thus W3 N
Iim Ly = {0}. This completes the proof of the
theorem. O

Remarks. 1. The proof of Theorem 2.1 is not
constructive. There are two basic operations on
polynomials for systems with linear normal form;
pull-up and push-down. The linear map L in the
proof can be expressed as the composition of these
two maps. For more details, refer to Krener et al.
(2001) and Krener and Li (2001).

2. The normal form is not unique. A given system
might be transformed into two different normal
forms. The reason is as follows. We brought a
given system into a normal form by the successive
anunihilation of the terms of degree 2. 3, ete. Notice
that the lower degree transformations affect the
higher degree terms. which we didn’t exploit in the
derivation of the normal form. Tall and Respondek
(2000) nsed this enlarged transformation group
for the linearly controllable systems to refine the
normal form, which is a canonical form. The
problem of the derivation of the canonical form
of linearly uncontrollable nonlinear systems is still
opel.

Next, we study the relationship between the nor-
mal form of degree d and invariants under the
transformations in (2.10) and (2.11). This will
give us a method of deriving the normal form of
a given system. First we denote by O(k) all the
polynomials in (21, 22.u) of degree > k. Consider
the transform in (2.11). Let G = -(% and G = 5‘2—

By the chain rule.

v

=o-G = (1+0(d~1)G

Let F(xy.xe.u) be the RHS of (2.2). It is straight-
forward to show by induction that for 0 < k < ng

3 o
-1 k y O —_
Yadk (@) = T +()(1)837
(-1 tadpPt (@) =001 )(;?I (2.25)
and
k 9
k - k‘ ; |
adh (@) = adi(G) + Z:O()(d 1) T
d
+()(d)m
adp ' H(G)=adPH(G)+) O@d-1
F ( ) ; ( )8'1.2112+1 b
O
O(d)=— 2.26
+0(d) B (2.26)

hisl

[ad’;“(c;).ad’;(a)] - [m’;“(é),m’;((‘;)]

k+1 9
+ old—-2)——
rg(, ( )6-7?2,n2+1—r
+0(d - 1)—6— (2.27)
a7 .

From (2.25), (2.26), and (2.27), we have the fol-
lowing lemma.

Lemma 2.2. The following polynomials are in-
variant under the transformations in (2.10) and
(2.11):

mi ! (ad (). (2.28)
At ({ad’;ﬁ'l (G),ad’;(a)]) , (2.29)
=2 ([ad';ﬂ @), ad’;(c;)]) (2.30)

for0<k<mg, 1<i<n,1<ji<nya—k-
1 where 7r l] takes the terms of degree m from
the m-th component of a given vector-valued
polynomial in (71,22, u).

We now show that the terms fl[d]’C and ledl in
the normal form of degree d are directly derived
from the invariants in Lemma 2.2. Let F be the
RHS of (2.6). One can show by induction that for
0<p<ngl=ny+2~p,

(-1)Pad(G)
_9
622,1124»1——]9

+§d: i a[QZCﬁ](Zl-,Zz,h-v- -,Zz,l)zg,l] 0
= 022, 021,

=1

N 12:2 B[R [k~ 2](21,22’1,... 220)73,] 8
i=1 Dza.1 0z,
na+1 8
+ Z hpi(z1. 22,1, -« s 22.5) 22,5 +O(d)5——
j=i+1 z
and
(-1)™*adptH(G) (2.31)

d n
_ (k1] 0
= Zjﬁ ;P ()5

. i‘: O1Q% M (21.221)23,] @
6zz 1 321 i

i=1
ng+1 6
+ 22 hn2+1’j(zl,22‘1,... .Z2yj)22’j +O(d)§
J=

where the h; ;(+)'s are some vector-valued polyno-
mials of degree < (d—2) in their arguments. Then,
for0<p<mgandg=na+1—p



[ad"ﬂ' YG). ad?, (G)]
Z QL

1wl

(1.22‘1 ..... ZQ,Q)Z%‘(I] 6
023, 02y

q--2 . {d--2] .
N Z ) [Riq (~1.~21.... .~2_q)Z§’q] a

i1 832_{1 822'1'
na+l P
~1d—3
+ z ]lg ](21.22,1 ..... ZQ‘J')ZQJ'
Jrgqtl
ad ad
Ad—3)=— +0(d—-1)=—
A= 35+ 0~ 1) 5

where the Al ¥ - ](-)'s are some vector-valued ho-
mogeneous polynomials of degree (d — 3) in their
arguments and A(d — 3) denotes all the polyno-
mials in (rq.29.u) of degree < (d — 3).

Let M, = {22,,’4,1 = 29440 = oo = Wpgpl = 0}
From (2.31) we have for 1 <i<m
[d-1]

!, V(1) Hadpt (6)) lu (2:32)

A1QL P (21, 221)734]

- P{rIAl} -
(=) + P

One can also show that for 1 < i< m;, 1 <5<
ny + 1

2l ([ad;;z+2“~f (G).ad;‘?“*f(c)])

- 02[(2[1(;“2](z1,z2,1.. . .Zg_j)zg‘j]

2
923

M,

(2.33)

and that for ] <i<ng—landi+2<j<ng+1
nil  (|adz 79 (6). adp I (G)])

P [d-2]
N ()Q[I?;; '(21.22,1.... .ngj)zgv]-]

922 ;

From (2.32). (2.33). (2.34) and Lemma 2.2, it
follows that the terms f{d]'c and fQ[d] in the normal
form of degree d > 2 are invariant under the
transformations in (2.10) and (2.11) and readily
computed from the invariants in Lemma 2.2.

M,

(2.34)

We now show that when A, is diagonal. the coef-
ficients ;3777 in (2.9) are invariants under the
transformations in (2.10) and (2.11). Clearly, they
are potentially changed only by ¢{1d] (z1)- There-
fore we need only consider coordinates changes of
the form

;i'l_,: =T, + (:771.3'1 e :I:l‘j,l

where 1 <i<nj. 1 <j; <... < jq <ny because
more general ones are just compositions of these.
This coordinate change only affects a piece of the
dynamics (2.2).

“/\ ll,+zf

r1.@o ) + O(d + 1)

is transformed to

d
= AT+ Y F @y, x2.)

k=2
d
—c (A,—, - Z/V:) Tigy T
I=1
+0(d +1).
Clearly, if A; = Z;l=1 Aj,, then the coefficient

of x1 4 -+ Z1;, is unchanged. It follows that the

/33 1774 are invariant under the transformations
in (2.10) and (2.11).
We now show the dual normal form without proof.

The replacement of fék] in (2.8) by the following
gives the dual normal form:

- ng-+1

pOlD I

i=1 j=ng—i+2

21 Z2 1 ,22,]‘)22,1'0

for some homogeneous polynomials ngfz] of de-
gree (k — 2). It may not be possible to transform

HIE
fl[ I<in (2.7) because of resonances.
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