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Abstract: This paper presents a normal form for the quadratic and cubic terms of
a nonlinear discrete time control system around an equilibrium under the group of
smooth changes of state coordinates and smooth invertible state feedback. The linear
part of the control system need not be controllable. A control bifurcation happens
at an equilibrium where there is a loss of linear stabilizability. The paper examines
the Neimark-Sacker control bifurcation, and show its relationship to the classical

bifurcation of the same name.Copyright
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1. INTRODUCTION

The theory of normal forms and bifurcations
of nonlinear difference equations is well known
(Arnold, 1983), (Guckenheimer and Holmes, 1983),
(Kuznetsov, 1998), (Wiggins, 1990). Briefly it is as
follows. Consider two smooth (C*) n dimensional
difference equations with equilibrium points,

ot = f(r) (1
0=f(0)
and
2t =yg(2) (2)
0=g(0)

where T (t) = x(t + 1). They are locally diffeo-
morphic if there exists a local diffeomorphisim

z=¢(x) (3)
0= ¢(0)

which carries (1) to (2),
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o(6(a)) = 222 @)

Such a local diffeomorphism carries trajectories
z(t) in its domain onto trajectories z(t) in its
range,

z(t) = é(z(t)

hence the two dynamics are locally smoothly
equivalent.

The linear approzimation of (1) around the fixed
point & =0 is

dxt = gg(()) o (4)

and this is a hyperbolic fized point if %(0) has
no eigenvalues on the unit circle. The discrete
time Grobman-Hartman Theorem states that if
the equilibrium z = 0 of (1) is hyperbolic then
it is locally topologically conjugate to its linear
approximation (4). A related theorem is that
two hyperbolic equilibria are locally topologically
conjugate if their linear approximations have the
same nunber of eigenvalues strictly inside the unit
circle and the signs of their products are the same



and also the same number of eigenvalues strictly
outside and the signs of their products are the
same (Kuznetsov, 1998).

A parametrized system

[9]

at = f(z, 1) ()

can have a locus of equilibria

Te = f(Tes pre)-

1t undergoes a local bifurcation at an equilibrium
Te, pe that is not locally topologically conjugate
to nearby equilibria. In light of the above, such
a bifurcation can only happen if one or more
gigenvalues of the linearized system Cross the
unit circle or the sign of the product of the
strictly stable eigenvalues changes or the sign of
the product of the strictly unstable eigenvalues
changes.

A standard approach to analyze the behavior of
the parametrized system (5) around a bifurcation
point is to add the parameter as an additional
state with trivial dynamics

pt=p (6)

then compute the center manifold through the bi-
furcation point and the dynamics restricted to this
manifold (Kuznetsov, 1998). The center manifold
is an invariant manifold of the extended difference
equation (5, 6) which is tangent at the bifurcation
point to the eigenspace of the eigenvalues on the
unit circle. In practice, one does not compute the
center manifold and its dynamics exactly, in most
cases of interest, an approximation of degree two
or three suffices. If the other eigenvalues are off the
unit circle then this part of the dynamics cannot
affect the local topological conjugacy around the
bifurcation point. If at the bifurcation point all
the cigenvalues of the linear approximation are
inside or on the unit circle then the bifurcation
point will be locally asymptotically stable for the
complete dynamics if and only if the dynamics
on the center manifold is locally asymptotically
stable. Of course, at some nearby equilibria the
dynamics may be unstable.

The next step is to compute the Poincaré normal
form of the center manifold dynamics. This is a
normal form under smooth changes of coordinates

e=¢(e) = To— ¢¥(z) = oPlx)  (7)

where ¢ldl(z) denotes a vector field that is a
homogeneous polynomial of degree d in . The
linear part of the change of coordinates T puts
the linear part of the center manifold dynamics in
Jordan form, the quadratic part of the change of
coordinates @2 cancels as much of the quadratic

part of the center manifold dynamics as possible,
as well as the cubic part of the cordinates do. From
its normal form the bifurcation is recognized and
understood.

Kang and Krener (Kang and Krener, 1992) de-
veloped a quadratic normal form for continuous
time nonlinear systems whose linear part is con-
trollable. This was extended to discrete time sys-
tems by Barbot, Monaco and Normand-Cyrot (J.-
P. Barbot and Normand-Cyrot, 1997). These au-
thors considered a larger group of transformations
to bring the system to normal form, including
invertible state feedback as well as change of state
coordinates. Kang (Kang, 1998a), (Kang, 1998b)
also developed a quadratic normal form for con-
tinuous time nonlinear systems whose linear part
may have uncontrollable modes. Krener, Kang
and Chang, (Normal Forms and Bifurcations of
Control Systems, n.d.), (A. J. Krener and Chang,
n.d.) described the quadratic and cubic normal
forms of continuous time nonlinear control sys-
tems and also their bifurcations.

This paper develops quadratic and cubic normal
forms for discrete time nonlinear control systems
of the form

zt = f(z,u) = Az + Bu+ R, )
+18(z,u) + Oz, u)* ®

where z, u are of dimensions n, 1. T he linear part
of the system does not need to be controllable.
Moreover, our quadratic normal form differs from
that of (J.-P. Barbot and Normand-Cyrot, 1997)
for linearly controllable systems.

A control bifurcation of (8) happens at an equi-
librium where the linear approximation loses sta-
bilizability. This is different from the bifurcation
of a parametrized system (5) which take place at
an equilibrium where there is a loss of structural
stability with respect to parameter variations. To
emphasize this distinction the paper shall refer to
the latter as a classical bifurcation.

The other difference between control and classical
bifurcations is that when bringing the control sys-
tem into normal form, change of state coordinates
and state dependent change of control coordinates
(invertible state feedback) is used to simplify the
dynamics.

2. QUADRATIC NORMAL FORMS
Consider a smooth (C3) system of the form (8)

under the action of linear and quadratic change
of state coordinates and state feedback

z=o(ry =Tw— (/5[2](17) (1)



v=ca(r,u) = Kz + Lu— ol(z,u) (2)
where 7', L are invertible.

1t is well known that there exists a linear change
of coordinates T and a linear feedback K, L that
transforms the system into the linear normal form

[zg] _ [fl(zl,mz,u)}
T folw, 22, 1)
[ alla]eal)

fu] 32,
| fhiens] rommare

where 11, T2 are 7, na dimensional, ny +ny = n,
A, is in Jordan form, As, B are in controller
(Brunovsky) form,

01...0 0
142: - B2= .
00 ...1 0
00...0 1

The result generalizing (L1, 1999) is given without
detailed proof.

Consider the system (3) where A, is diagonal
and A,, By are in Brunovsky form. There exist a
quadratic change of coordinates and a quadratic
feedback

(2] [

v=U —a[Z](xl,:pg.,u)

which transforms the system (3) into the quadratic
normal form

EIE A1 R PA DG

+ l:f}?.;()](zﬁz27v) + ﬂm](zl;zz,v) }
0 + 0
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Flo;2
A (215 20, 0)
+O(21 3 %25 (U)3
Fldiida - . .
where fl-[ ' ](21; z2,v) is a polynomial vector field
homogeneous of degree d; in z; and homogeneous

of degree dy in zy,v. For notational convenience,
define z3 5,41 = v.

The vector field ﬂ2;0J is in the quadratic normal

form of Poincaré,

ol > #% el o zip (5)

A=A Ay

and the other vector fields are as follows,

nz+1

=T E S e

Ai=0A;=0 k=1

+ Z Z ’Y‘l]l ei 21,5 %2,1, (G)

Ai#0 A;£0
na+1
FEI=3"%" 61k ef 21 22, ©)
Ai#0 k=1
n2—1 na+l

= > > it eh 2o 2 (8

i=1 k=it2

The normal form is unique, that is, each system
(3) can be transformed into only one such normal
form (4-8) . This follows from the fact that the
numbers in the above, 5] k 43k 81k, €l for the in-
dicated indices, are moduli, i.e., continuous invari-
ants of the system (3) under quadratic change of
coordinates and quadratic feedback. These num-
bers are defined as follows

W O
jk __ 1.4
B = o e (00,0 ©

for 1 <1i,j,k <np and A; = Aj)g,
vk = _Ohi (0,0,0) (10)
¢ 6w1xj8zg,k ’
for1<4,7<m,1<k<ny+1
and /\1' = /\j = O,

LN VANY; .3 ‘

1 1 1,i

A -— — 0’ 070 11

™ ; </\j) aivl,jazz,m( ) (1)
for 1 <i,j <my and A)j #0,

ny—k+1 9
0N
51k — /\l‘ 51
! ; ! 0$2,t+10$2,k+l
for1<i<mn;,1<k<ny+1and A #0,
no—k+1

1k D fa,it1

€ =

(0,0,0) (12)

——(0,0,0 13
= 0I2,1+13$2,k+t( ) (13

forl<i<mp—landi+2<k<ny+1.

Remark. I some of the eigenvalues of A, are com-
plex then a linear complex change of coordinates
is required to bring it to Jordan form. In this
case some of the coordinates of z; are complex
conjugate pairs and some of the coefficients in the
normal form are complex. These complex coeffi-
cients occur in conjugate pairs so that the real
dimension of the coefficient space of the normal
form is unchanged. This is also true for the cubic
normal form discussed in the next section.



3. CUBIC NORMAL FORMS
Now the cubic normal forms is given without
detailed proof.

Consider a smooth (C*) system

_ .41 0 I 0
-l a] (2] [a ]
+ flp;()](wla'cbu)
0
+ fl[o;i_)](zlé-vbu)
| A @20, )
n {?(331:,352-,“)
[ ](.L‘l,.l,'),u)

+O(.’1¢1 , L2, u)i
where A, is diagonal, A, B, is in Brunovsky
form and the quadratic terms are in the normal

form of Theorem 2. There exist a cubic change of
coordinates and a cubic feedback

[21} _ [n] REGED)
@ L2 95!33] (1, 29)

v=u—abl (x1,22,u)

which transforms the systemn (1) into the cubic
normal form

P A, 0 [0
1 L B PA S
L g,
1 1; %2, ) fi (=122, v)
K K
[ plo:2 1 HED
+ flil).a;(h;zmv) +|: 1[10](12,2271/‘)]
| S (e 22,0 | 0
N '];1[2;1](,21:32,'0)— N f:l[ifi](:/l;;,z;v)
U AP im0
{0:3) 5 ]
[“;1[', ,]Ez : IL) + O(z1, 22, v)".

n241

21] Z E Z’Y"“elzlgzuzu

M=0 AjAe=0 I=1

+ Z Z ’ygkl ei 21,5 21,k %21 (4)

Ai#EQ AjAkF#0
na+1 no+1
§ : E : E : jki
Z (5] el 21,5 %2,k %2
Ai=0 A;j=0 k=1 [=k
na+1
STV
+ E Z E 5,— ei R1,j 221 %24 (5)
Ai#0 Aj#0 I=1
na-+1 ne+1
7103 1kl i
PA=S Y Y dM el nimp s (6)
A#C k=1 I=k
no—1 Tta+1
jll i
=3 > Y Ve a maing (7)
i=1 A;#0l=i+2
nz—1 na+1 1

03] Z Z anu el 22,1 2ok 22, )

i=1 l=it2 k=1

The normal form is unique, that is, each system
(1) can be transformed into only one such normal
form (2-8) . This follows from the fact that the
numbers in the above, /% J# g1k g1kt (dLt p1k
for the indicated indices, are moduli of the system
(3) under cubic change of coordinates and cubic
feedback. These moduli are defined as follows

'j""l a flL

————(0,0,0 9
()Jlja.l,‘l k(‘)xll( ’ ) ( )
for 1 <4,7,k, 0 <njand A; = AjAp Ay,
) 3
B L G rs (0,0,0) (10)

Oy ;0xy k02,
for1<i<ng,1<j<k<n,
1< <ny+1and A; = AjA =0,

na—k41 r .
As PBfii
M= : . 0,0,0
{l rz::() ()\j/\k> al'lvj(‘).'l,'l,kail)g,,-_*.l( T )
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N (‘); flt
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(1)

for1<i<n,1<k<l,
i+2§l§n2+land)\i;":0,

=" D00
—0 awl,jaz2,1+r6$2,r+l
(15)
for1<i<ny—-1,i+2<I<ny+1
and A; #0
o mctl O frser
= ; 0$2,1+ra£;,:ira$2,l+r (©:0,0)
(16)

for1<i<my—1,1<k<l
and{+2<1<n2+1.

4. CONTROL BIFURCATIONS

In the above theorems there is a lot more de-
tails than are necessary to understand the type
of bifurcations that are possible. Recall that in
the bifurcation theory of a parametrized systemn
of difference equations, the interesting part of the
dynamics is that restricted to the center manifold.
This leads to a great reduction in the dimension
of space that must be explored. A similar fact
holds true when studying control bifurcations. In
most applications one will ultimately use state
feedback in an attempt to stabilize the system so
the coordinates that are linearly stabilizable can
be ignored to a large extent. If there are modes
which are neutrally stable and are not linearly
stabilizable, then the particular choice of feedback
will influence the shape of center manifold of the
closed loop system and the dynamics thereon. It
might be possible to achieve asymptotically stable
center manifold dynamics by the proper choice of
feedback although it will not be exponentially sta-
ble. Let us now discuss an important bifurcation
of control systems.

4.1 Newmark-Sacker Control Bifurcation

The discrete time analogue of a classical Hopf
bifurcation is called a Neimark-Sacker bifurca-
tion. The authors present the control analogue of
this bifurcation. The uncontrollable modes are a
nonzero complex conjugate pair,

1= A0

TLToA
where A = pe, A = pe=® 0 £ 0,7/2, 7, 37/2.
The equilibria z.(p), v, (1) are given by

[:,AH] - A ! [‘El} + 0?3 (1)

Sel2

where
_ n2+1
§i= Yo"
k=1
The local linearization around z., v, is
=+ y -
| A+ pl pA ARE
{ESL]_([ 0 4 | TOWNLG
(|15 row?)s @
2
where 2 = 2z — z.(u), © = v — ve() and

ro11 .21
="M 7
=111 .2

L7272

Ao |Gl a . g
6, + 81 832 .. gl
r olyio+1

Bl= 5]]:,112-&-1:‘
L6

If the transversality condition

5 4+ 811 512 12 61.112+1
[ ][] e (] 0
©)

is satisfied then the system is linearly controllable
hence stabilizable about any equilibrium except
p# = 0. Consider a parametrized family of feed-
backs

v=#(z, 1)
U= I\Il ([L)ZH + I\,_;(/t)i_g (G)

If p < 1 then the system is stabilizable about
any equilibrium but if p > 1 then the system is
not stabilizable when g = 0. The case p > 1 is
called a Neimark-Sacker control bifurcation. Let
us distinguish two subcases, p > 1 and p = 1.

If p > 1 then it requires larger and larger gain to
stabilize the system closer and closer to p = 0. But
if the feedback (6) is continuous it will stabilize
only for some small p > 0 or for some small
< 0 but not both. At g = 0 the poles of the
closed loop system are A, A and the poles of Ay +
B,K»(0). The latter can be made stable but the
former are unstable. If the feedback is bounded
then as i — 0 the poles converge to these. The
system is controllable for u # 0 so the poles
can bhe placed arbitrarily by feedback. The poles
assoclated primarily with the z, subsystem can be



kept stable but the two poles associated primarily
with the z; subsystem will leave the unit disk at
some small value(s) of p. Depending on the choice
of feedback, they will leave one at a time as real
poles, leave together through +1 or leave together
as a nonzero complex conjugate pair. If they
leave together as a complex conjugate pair that
is neither real nor imaginary then generically the
system undergoes a Neimark-Sacker bifurcation.
If they leave together through =1 the situation
can be quite complicated and will not be discussed
here.

If p = 1 and the feedback (6) is continuous
then generically the system undergoes a Neimark-
Sacker bifurcation at p = 0 provided that e**? # 1
for k = 1,2,3,4. The authors illustrate this with
an example.

+ o pin/d 2
zj1=¢€ /21,1 + 23

—in /4 2
i, =e M+ 2l
Iy =1u.
The equilibria are
— eyl
Zel,1 = CH
Zet 2 =
Lez = |
Ue = |1

a1 . .
where ¢ = (1 - ¢"/*)"" The linear approxima-
tions are

= E )+ 2k
5?’2 = €~z7r/11212 + 22
M =a

where 51\1 = Z11 — C/I,z., 21'2 =212 — Eﬂz, T, =
2y — pt, = u — p. The linear approximations are
controllable except at = 0.

The feedback

w = p40.5(z1 1 —ep?) +0.5(21 0 — i) +0.5(w2 — 1)
places the poles of the closed loop system inside
the open unit disk at 0.7953 £ 0.5743¢7, 0.3957 at

j0 = 0.1, A pair of poles leaves the unit disk at
T/ when po= 0.

The closed loop dynamics undergoes a Neimark-
Sacker classical bifurcation at g = 0. The discrete
titme analogue of the first Lyapunov coefficient is
found in Kuznetsov, (Kuznetsov, 1998), p. 186,
formula (5.74). For this example a(0) = 46.8
which indicates that the system undergoes a sub-
critical Neimark-Sacker bifurcation at g = 0. For
small 1 > 0 the equilibrium is exponentially stable
but there is an unstable invariant closed curve
nearby. For small g < 0 the equilibrium is un-
stable as is the bifurcation equilibrium, = 0.

5. CONCLUSION

The authors have developed a theory of quadratic
and cubic normal forms for discrete time control
systems. and have also shown the uniqueness of
the normal forms. To avoid notational difficulties,
the authors have restricted attention to scalar
input systems whose uncontrollable part is diago-
nalizable. But the result can be easily extended
to more general systems. The authors have in-
troduced the concept of control bifurcation and
exhibited a simple example of the Neimark-Sacker
control bifurcation.
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