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Abstract: We extend the method of Kazantzis and Kravaris (Kazantzis and Kravaris,
1998) for the design of an observer to a larger class of nonlinear systems. The extended
method is applicable to any real analytic observable nonlinear system. It is based
on the solution of a first-order nonlinear PDE. This solution yields a change of
state coordinates which linearizes the error dynamics. Under very general conditions,
the existence and uniqueness of the solution is proved. Siegel’s theorem is obtained
as a corollary. The technique is constructive and yields a method for constructing

approximate solutions.
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1. INTRODUCTION

We consider the problem of estimating the cur-
rent state x(t) of a nonlinear dynamical system,
described by a system of first-order differential
equations

&
Y

fla)
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from the past observations y(s),s < t. The vec-
tor fields f : R* - R*, and h : R* —» R?
are assumed to be real analytic functions with
£(0) = 0, h(0) = 0. One technique of construct-
ing an observer is to find ‘a nonlinear change of
state and output coordinates which transforms
the system (1) into a system with linear out-
put map and linear dynamics driven by nonlin-
ear output injection. The design of an observer
for such systems is relatively easy (Krener and
Respondek, 1983), (Krener and Isidori, 1983),
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(Bestle and Zeitz, 1983) and the error dynamics
is linear in the transformed coordinates. Recently
Kazantzis and Kravaris have proposed a simpler
method (Kazantzis and Kravaris, 1998). One seeks
a change of state coordinates z = 8(z) such that
the dynamics of (1) is linear driven by nonlinear
output injection

i = Az Bly), @)

where A4 is an n x n matrix and 8 : R*» —+ R" is
a real analytic vector field. One does not have to
linearize the output map.

Such a @ must satisfy the following first-order
partial differential equation:

W 1w = 0@ - p). @

Kazantzis and Kravaris considered the restricted
form of this problem where the output injection
is linear. 3(y) = By, but their method generalizes
immediately to analytic 3. There are advantages
to using nonlinear 3 which we discuss later. They



showed using a particular form of the Lyapunov
Auxiliary Theorem (Liapunov, 1966) that (3) has
a unique solution under certain assumptions.

Theorem (Liapumnov, 1966). Assume that f :
R" > R*h: R* - RP and § : R* -+ R"
are analytic vector fields with 7(0) = 0, n(0) =

_ _9f - o _
0, B(0) =0 and F = 5(0), H = 5-(0), B =

%(0) Let the eigenvalues of F be (A1,...,An)
and the eigenvalues of A be (ju1,...,1n). If

(1) 0 does not lie in the convex hull of (A1, ..., An),
(2) there does not exist non-negative inlegers
my, My, ..., My, not all zero such that
Z?:l maAi = Y,
then the first-order PDE (8), with initial condition

6(0) = 0, admits a unique analytic solution 0 in e
neighborhood of = 0.

Based on above theorem, Kazantzis and Kravaris
proposed a nonlinear observer design method
(Kazantzis and Kravaris, 1998), where the state
observer is constructed using the coordinate trans-
formation z = #(z) and the output injection 5(y).

Kazantzis and Kravaris Theorem (Kazantzis
and Kravaris, 1998). Assume that f,h,0,5 are
as in the above theorem and additionally

3. 0 is a local diffeomorphism,
4. A is Hurwitz

then the local state observer for (1) given by

f o 1) - [gg f)]_ B) - BRE)). @)

has locally asymptotically stable error dynamics.
In z coordinates, the system is given by (2), the
observer 1s

2= Az - B(y) (5)

and the error Z = z — Z dynamics is

3= Az

(ST

(6)

One can show that if the conditions of this the-
orem hold then (H, F) is an observable pair and
(A, B) is a controllable pair. On the other hand if
(H, F) is an obgervable pair then one can choose
an invertible T and B so that A = (TF+BH)T~?
satisfies 2, 8 and if the solution of (3) exists
for some 8 such that 5(0) = 0, Qz(0) = B,
then ¢ is a local diffeornorphism. The 'size of the
neighborhood of 0 on which 8 is a diffeomorphism
varies with the higher derivatives of 3 hence the
advantage of allowing them to be different from
ZeT0.

Che approach of Kazantzis and Kravaris has an
advantage over that of Krener and Respondek
(Krener and Respondek, 1985) and similar at-
tempts to transform the dynamics and output
map into observer form. The former uses the
Lyapunov Auxiliary Theorem which depends on a
nonresonant condition, assumption 2 above, while
the latter depends on integrability conditions.
The nonresonant condition is generically satisfied
while the integrability conditions are generically
not satisfied. However, assumption 1 of Kazantzis
and Kravaris is quite restrictive, it requires the
system to be locally asymptotically stable to the
origin in either forward or reverse time. Assump-
tion 1 requires that the eigenvalues of the linear
part of f(z) at the origin lie in the Poincaré
domain, whose definition follows.

Definition 1. An n-tuple A = (A1,...,An) of
complex numbers belongs to the Poincaré domain
if the conves hull of (A1,..., An) does not contain
zero. An n-tuple of complex numbers belongs to
the Siegel domain if zero lies in the conves hull of
(ALs-- 5 An)-

Clearly, requiring the spectrum of F to be in the
Poincaré domain rules out many interesting prob-
lems, including critical ones where there are eigen-
values on the imaginary axis, (Krener, 1994). In
this paper we extend the observer design method
of Kazantzis and Kravaris to the Siegel domain
(Arnol'd, 1988). We start with a definition.

Definition 2 Given an n x n mairic F with
spectrum o(F) = A = (A1,..., An) and constants
C >0, v >0, we say a complex number u is of
type (C,v) with respect to o(F) if for any vector
m = (my,ma,...,My) of nonnegative integers,
jm| =Y m; > 0, we have

m—m-xlzl"%. 0

Now we are ready to state the main result of this
paper.

Main Theorem. Assume that f : R" - R" h:
R" > R and 3 : R? = R" are analytic vector
fields with f(0) = 0, h(0) = 0, B(0) = O and

_9 _oh _ 9B
= a(o)v 7= 6:0(0)’ b= Dm(o)' Suppose

(1) there exists an invertible n x n matriz T so
that TFT~' = A— BH,

(2) there exists a C > 0,v > 0 such that all
the eigenvalues of A are of type (C,v) w.r.t.
o(F).

Then there exists a unique analytic solution z =

f(x) to the PDE (3) locally around z = 0 and
gg(()) =T so0 0 is a local diffeornorphism.



Note: Assumption 2 implies that the eigenvalues
of A are distinct from those of F. We shall show
the following: assumptions 1,2 imply that (H, F)
is an observable pair. On the other hand, if (H, F)
is an observable pair then one can let T' = I and
set the spectrum of A arbitrarily by choice of B.
Almost all complex numbers are of type (C,v)
w.r.t. o(F’) so assumption 2 is hardly a restriction
on A when (H,F) is an observable pair. If A is
chosen to be Hurwitz, then the state estimator
is given by (4) and the error dynamics is locally
asymptotically stable as before.

The paper is organized as follows. Section 2.1
discusses the relationship between the linear part
of the nonlinear system (1) and the terms of
degree one of the solution (3). A unique formal
solution of (3) is given in Section 2.2 and this is
shown to be convergent in Section 2.3. We also
show in Section 2.1 that (3) has an unique solution
for any choice of the eigenvalues of A except for a
set of zero measure in C". An example is treated
in Section 3.

Because of space limitations, we have not included
proofs of most results given in section 2 below;
they can be found in the full version of the paper,
available from the authors.

2. SOLUTION OF THE PDE
2.1 Terms of Degree One

If we focus on the terms of degree one in (3), we
obtain the equation

TF = AT — BH. (8)

We view this as a linear equation for T in terms of
given ¥, H, /A, B. Let us state some facts related
to these matrices.

(A1) Equation (8) admits a unique solution T
if an only if the eigenvalues of F' and A are
distinet, that is o(F) No(A) = 0.

(A2) Suppose o(F)Na(4) = 0. If T is invertible,
then (H, F) is observable and (A, B) is control-
lable.

(A3) If T is an invertible solution to (8), then A
is conjugate to F modified by output injection.

(A4) If o(F)no(d) = @ and A is conjugate
to [ modified by output injection, then there
exists B such that the unique solution to (8) is
invertible.

Loosely speaking, a complex number p is of type
(C,v) with respect to o(F) = M if jp—m - Al is
never zero and does not approach zero too fast as
lim| -+ oc. If ¥ is large enough then the set of p’s
which are of type (C,v) for some C > 0 is dense
in the complex plane.

Theorem 1. ¥ C > 0 and v > § then
meas {g : p is not of type (C,v)} < k(n,»)C?,
where k(n, ) is a constant which depends only on

n and v.

If v > % then the set of points which are not of
type (C,v) for any C > 0 is a set of zero measure.

2.2 The Formal Solution of the PDE

Assume the hypothesis of the Main Theorem hold,
we show that there is an unique solution to the
PDE (3) within the class of formal power series.’
It is convenient to assume that F and A are
diagonal, the proof in the general case is similar
but much messier. We expand the terms in power
series

f@)=Fz+ fA2) + fBl@) +...,
B(h(z)) = BHz + B () + L) + ...,
8(z) =Tz + 0% (z) + 6B (z) + .. .,
where fl], g4 and gldl are homogeneous poly-
nomial vector fields of degree d in z. The knowns
are f, h, B, T and the unknowns are the higher

degree terms 612, 6131 . . .. The linear terms satisfy
(8) by assumption.

The degree d part of (3) is

O @ - 4090 = %) ()

where

Bl (@) = p1(z) + T 1(x)
d-1

4] ;
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Let e* denote the Kt unit vector in z space and
Lamy

™ = g ...zl Then the above terms can be
expanded as

B[d](.'ll) =i Z /[;k,mekzmv

k=1 |m|=d
n
U[d] (.’l‘) — Z z Uk,meka:’"
k=1 |in|=d

and we obtain the equations

(ptr — - Nk = Brm. (11)

These equations have unique solutions because
m-A—pp #0.

The formal approach yields a method for con-
structing an observer with approximately linear



error dynamics. Start by choosing an T, A, B sat-
isfying the linear equation (8). Then successively
solve (9) up to some degree d. At each step SU!
can be chosen to make 81 smaller and thereby try
to keep (x) close to its globally invertible linear
part Tx. The approximate solution

(z) = Tz + 62 () + 63 (z) + ...
Aly) =By + gB(y) + BB (y) + ..

transforms the system (1) into

+ 019 (z)
+ A (y)

&= Az - B(y) + O(z)**

50 the observer (4) has approximately linearizable
error dynamics. The error is O(z,#)7*!. When
implementing the method, the matrices F, A need
not be diagonal but this makes solving (9) very
straight-forward.

2.3 Convergence of the Formal Solution

Let |x] = max{|z1],...,|za|}. We write

J(@) =rz+ ()

B(y) = BHz + B(z)
where AT — TF = BH. We first show that the
following sequence of PDEs

As(a) — S y() e =TF(@) + Alz)

Al () — %Gk(w)Fz = —?—Hk_l(z)f_(:c)

Ox
admits a sequence of analytical solutions 6;(x),
65(x), ...in some neighborhood of the origin.

Then we show that the sum

Tz + 02(x) + 05(x) + . ..
converges to an analytic function which solves (3).
We define a positive real function by : [0,1) —
[0,0¢) to be

br(q) == demax

[C‘ld”q%] ,
Z,,d>k

where C > 0 and v > 0 are given.

Theoremn 2. Let P(z) be a real analytic function
in lr] < r with P(0) = 0. Suppose all of the
eigenvalues of A are of type (C,v) with respect
to o(F). Then the first order PDE

()0(£)
ra

admits a unique analytic solution 8(x) in |zf < r
with 6(0) = 0.

Af(r) — = P(x) (12)

Following from Theorem 2, we immediately have

Corollary 1. Suppose all of the eigenvalues of A
are of type (C,v) w.r.t. o(F). The following PDEs

Aez<£>_%"-( VFr=Tf(z)+3x), (13)
00;‘ (.L‘)F E)HL 1

Aby(z) - (z)f(z), (14)

admit analytic solutions in |a:| < r, satisfying
0:(0) = 0, and 0,(0) =0, for k =3,4,....

The next step is to prove that

Oo(z) + O3(z) + ... + O (z) +

converges near the origin and solves the PDE (3).
Theorem 3. There exists 0 < r; < 7 such that if

P(z) is analytic in |z} < 71 where |P(z)] < N
then op

() f <N
@) f(@)] <D

in |z] < 71. Note that 71 does not depend on N.

In the definition of type (C,v), without loss of
generality we can assume that v is a positive
integer since if ¥ is not, we can replace it by a
larger integer.

Theorem 4. Let r5 := r1/n, where ry is given in
Lemma 6. Let 6, (x) be the solution of

99L 9k 1

Abi(z) — 5~ (@) Fr =

——(z)f(2).

Then if |€k_1(:1;)| < N for |z] < ra, we have

\P(l.l:ll 4+ l.l?gl +
o + ool

-+ lznl)
+ |$n|))u+l '

0k ()| < Con

for |x| < r2, where P is a polynomial of degree v
with coefficients depending only on r;.

Let ry :=r2/2 and

N := max Plz| + -+ fou]) .
T el C(ry = (Jma ]+ -+ e ]))
and
M= maxy (w[dl (@) + T fldJ(x)l) .
fej<r i3
Theorem 5. Let i (x) be the solution of
0t 00y,
R Ve = 6
() - SE@)Fr = L @)f@) 64(0) =

Then for any |z| < gry with 0 < g <1 we have



16k(2)| < bi(g)N* 2 M.
Corollary 2. When q is small enough, the series

02(z) + 05(2) + ... + Ok() + ...

converges in |z| < qrs, where 84(x) for d =
2.3, ... is the solution of (14).

From Corollary 2, we know that series

O2(z) + Oa(x) + ...+ 04(x) + ... (15)
defines an analytic function in |z| < g¢rs.

(Siegel’s Theorem) Assume that f : R® — R”
is an analytic vector field with f(0) =0, %5(0) =
F. Suppose, for some C > 0,v > 0, the eigen-
values of F are of type (C,v) with respect to
o(F). Then there is an analytic solution in some
neighborhood of the origin of the first-order PDE:

00
—(2)f(z) = FO(a)

with initial condition 6(0) = 0. Moreover z = 0(x)
is a local analytic diffeomorphism around x = 0
which transforms the differential equation

& = f(z)
into its linear part

z2=Fz

Proof: Apply the Main Theorem with 3 = 0 and
T=1 g

3. AN EXAMPLE

As discussed in the introduction, Kazantzis and
Kravaris (Kazantzis and Kravaris, 1998) consid-
ered only linear output injection but there are
distinct advantages to considering nonlinear out-
put injection B(y). It is desirable that 6 be a
diffeomorphisin over as large a range as possible
because this is the domain of convergence of the
observer. Nonlinear output injection can make 0
a global diffeomorphism. To see this, we consider
a Van der Pol oscillator:

F4+@E-Di+zx=0
y=uz

which is equivalent to the planar systein

HEEHIHREA

y=[10] [fl]

Ly letting x; = =,z = . Now we have

T2

@) = | )

—I1 + X2 — T1T2

| =,

01
F= [_1 1], H=[10].
We look for a nonlinear coordinate transformation
z = 8(z) such that in the new coordinates z, the
system can be described in the form

z=Az—B).

Let us choose A and j to be

¥
by + %
a=,] ew=| A
boy + =&
3
where by, by are constants such that 14+b < 0,b1—
by+1 > 0. Clearly, A is stable since trace(4) = 1+
by < 0 and det(4) = b — bs + 1 > 0. Moreover
A = F + BH with B = [by,b2]'. The solution of

(3) in this case is given by

T
o(z) = 3
T + 31‘

Note that 8 is globally invertible on R2.

Observation of the state of van der Pol equation, x1

sofution x1

L 1
0 5 10 15
umet

Observation of the state of van der Pol equation, X2
T T

solution x2
\
"N

: —— actust state
-8, ; o o] =~ estimated

time 1

Fig. 1. Observation of Van der Pol Oscillator
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