Practical Stabilization of Systems with a Fold
Control Bifurcation

Boumediene Hamzi'? and Arthur J. Krener?

! INRIA, Domaine de Voluceau, Rocquencourt, BP 105,
78153 Le Chesnay Cedex, France.

2 Department of Mathematics, University of California, One Shields Avenue,
Davis, CA 95616, USA.

{hamzi,krener}@math.ucdavis.edu
1 Introduction

Nonlinear parameterized dynamical systems exhibit complicated performance
around bifurcation points. As the parameter of a system is varied, changes
may occur in the qualitative structure of its solutions around an equilibrium
point. Usually, this happens when some eigenvalues of the linearized system
cross the imaginary axis as the parameter changes [7].

For control systems, a change of some control properties may occur around
an equilibrium point, when there is a lack of linear stabilizability at this point.
This is called a control bifurcation [21]. A control bifurcation occurs also for
unparameterized control systems. In this case, it is the control that plays the
parameter’s role in parameterized dynamical systems.

The use of feedback to stabilize a system with bifurcation has been studied
by several authors, and some fundamental results can be found in [1], [2],
[3], [6], [16], [8], [17],[11],[12], [10], the Ph.D. theses [13], [21], [22] and the
references therein.

When the uncontrollable modes are on the imaginary axis, asymptotic
stabilization of the solution is possible under certain conditions, but when
the uncontrollable modes have a positive real part, asymptotic stabilization
is impossible to obtain by smooth feedback [4].

In this paper, we show that by combining center manifold techniques with
the normal forms approach, it is possible to practically stabilize systems with
a fold control bifurcation [21], i.e. those with one slightly unstable uncontrol-
lable mode. The methodology is based on using a class C° feedback to obtain
a bird foot bifurcation ([20]) in the dynamics of the closed loop system on the
center manifold. Systems with a fold control bifurcation appear in applica-
tions. For example, in [25] a fold bifurcation appears at the point of passage
from minimum phase to nonminimum phase.
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The paper is divided as follows : in Section §1, we introduce definitions of
e—Practical Stability, e—Practical Stabilizability and Practical Stabilizabil-
ity ; then, in Section §2, we show that a continuous but non differentiable
control law permits the practical stabilization of systems with a fold control
bifurcation.

2 Practical Stability and Practical Stabilizability

Practical stability was introduced in [23] and is defined as the convergence
of the solution of a differential equation to a neighborhood of the origin.
In this section, we propose definitions for practical stability and practical
stabilizability.

Let us first define class I, K4 and KL functions.

Definition 1. [18, definitions 3.3, 3.4]

e A continuous function « : [0,a) — [0,00) is said to belong to class K if
it is strictly increasing and a(0) = 0. It is said to belong to class K if
a =00 and lim,_, a(r) = co.

e A continuous function 5 : [0,a) x [0,00) — [0, 00) is said to belong to class
KL if, for each fized s, the mapping B(r,s) belongs to class K with respect
to r; and, for each fixved r, the mapping B(r,s) is decreasing with respect
to s and lim,_, o, B(r,s) = 0.

Let D C IR" be an open set containing containing the closed ball B, of
radius & centered at the origin. Let f : D — IR™ a continuous function such
that f(0) =0.

Consider the system

i = f(a). (1)

Definition 2. (e— Practical Stability) The origin is said to be locally e —practic-
ally stable, if there exists an open set D containing the closed ball B, , a class
KL function ( and a positive constant 6 = 0(g), such that for any initial
condition x(0) with ||z(0)|| < 0, the solution x(t) of (1) exists and satisfies

dg, (z(t)) < ((d, (2(0)),1), Vt =0, (2)

with dg, (z(t)) = inf,en, d(z(t), p), the usual point to set distance.

Now consider the controlled system

z = f(z,v), (3)

with f: DxU — R", f(0,0) =0, and 4 C IR™ a domain that contains the
origin.
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Definition 3. (e— Practical Stabilizability) The system (3) is said to be locally
e—practically stabilizable around the origin, if there exists a control law v =
k. (x), such that the origin of the closed-loop system & = f(x,k-(x)) is locally
e—practically stable.

Definition 4. (Practical Stabilizability) The system (8) is said to be locally
practically stabilizable around the origin, if it is locally e —practically stabiliz-
able for every e > 0.

If, in the preceding definitions, D = IR", then the corresponding properties
of e—practical stability, e —practical stabilizability and practical stabilizability
are global, and the adverb “locally” is ommitted.

Now, let us reformulate the local e—practical stability in the Lyapunov
framework.

Let V be a function V : D — IR, such that V' is smooth on D \ B., and
satisfies

€D = ay(ds, (2()) < V(2) < as(ds, (a(1)), (4)

with aq and as class K functions.
Such a function is called a Lyapunov function with respect to B, if there
exists a class K function a3 such that

V(z) = L)V (z) < —as(dp, (x)), forz € D\ B.. (5)

Proposition 1. The origin of system (1) is e—practically stable if and only
if there exists a Lyapunov function with respect to B, .

Proof. In [24], the authors gave stability results for systems with respect to
a closed/compact, invariant set A. In particular, the definition of asymptotic
stability and Lyapunov function with respect to A were given. In the case
where? A = B, , asymptotic stability with respect to B, reduces to our defi-
nition of e—practical stability (definition 2). The proof of our proposition is
obtained by applying a local version of [24, Theorem 2.9]. o

If D = R" and a1, as are a class K4 functions, the origin is globally
e—practically stable.

Remark : When ¢ = 0, we recover the classical definitions of local and
global asymptotic stability.

3 Systems with a Fold Control Bifurcation

In this section, we apply the ideas of the preceding section to the system (3)
when its linearization is uncontrollable at an equilibrium, which we take to

3 B. is a nonempty, compact and invariant set. It is invariant since V is negative
on its boundary ; so, a solution starting in B, remains in it.
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be the origin. Suppose that m = 1 and that the linearization of the system
(3) at the origin is (A4, B) with
of af

A= %(QO): B = %(070);

and
rank([B AB A’B --- A" 'B]) =n—1. (6)

According to the assumption in (6), the linear system is uncontrollable.
Suppose that the uncontrollable mode \ satisfies the following assumption
Assumption : The uncontrollable mode is A € Rx>o.

Let us denote as Yy, the system (3) under the above assumption. This
system exhibits a fold control bifurcation when A > 0, and, generically, a
transcontrollable bifurcation when A = 0 (see [21]).

JFrom linear control theory [14], we know that there exist a linear change
of coordinates and a linear feedback that put the system X, in the following
form

Z1 = Az + 0(51,52,’11)25 7
Zy = AgZy + Boti + O(21, 22,1)°, @

with 7z; € R, 7, € R®"V*Y 4, ¢ ROV*(=D 3pd B, € RV The
matrices As and By are given by

010---0 0
001---0 0
Ay=|iiici] Ba=
000---1 0
000---0 1

To simplify the quadratic part, we use the following quadratic transforma-
tions in order to transform the system to its quadratic normal form

{Zl] = [Zl} - ¢Pl(z1, 2), )

%) %)

uw=1u-a(z,%,0). (10)
The normal form is given in the following theorem

Theorem 1. [21, Theorem 2.1] For the system Xy whose linear part is of the
form (7), there exist a quadratic change of coordinates (9) and feedback (10)
which transform the system to

n
2= Az + B2 +yzize + Z 8j 25 ; + O(21, 22, u)%,
= (1)

n—1 n
Zy = Aszs + Bou + Z Z 6’ z;j e, + O(z1, 29, u)?,
i=1 j=i+2
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with 8,7,0;,0] are constant coefficients, z2, = u, and €} is the ith— unit
vector in the zo—space.

Let us consider the piecewise linear feedback

u = Ki(21)21 + K222 + O(21, 22)°, (12)
with _
ki, 20,

We wish to stabilize the system around the bifurcation point. The control-
lable part can be made asymptotically stable by choosing K> such that
Property P: The matrix A> = Ay + By K, is Hurwitz.

Under the feedback (12), the system Xy, has n—1 eigenvalues with negative
real parts, and one eigenvalue with positive real part, the uncontrollable mode
A. Nevertheless, if we view the system X, as being parameterized by A, and
by considering A as an extra-state, satisfying the equation A = 0, the system
Y under the feedback (12) possesses two eigenvalues with zero real part and
n — 1 eigenvalues in the left half plane.

Theorem 2. Consider the closed-loop system (11)-(12), then there exists a
center manifold defined by zo = II(z1,\) whose linear part is determined by
the feedback (12).

Proof. By considering A\ as an extra state, the linear part of the dynamics
(11)-(12) is given by

A=0,
2.;1 = O(>‘321722)27 _ (13)
29 = BQKl(Zl)Zl + Aszo + 0(2’1,2’2)2.

Az1 is now considered as a second order term.

Let X%, (resp. X} ) be the system (13) when Ki(z1) = ki (resp. K1(z1) =
k1) for all z;. Since the system Xy, (vesp. X ) is smooth, and possesses two
eigenvalues on the imaginary axis and n — 2 eigenvalues in the open left half
plane ; then, from the center manifold theorem, in a neighborhood of the
origin, Xy, (resp. X} ) has a center manifold W* (resp. W¢).

For X% , the center manifold is represented by z» = II(A, z1), for A and 2
sufficiently small. Its equation is

22 = AQﬁ()\, Zl) + Bg(Elzl + KQﬁ(A, Zl)) + O(Zl, 2’2)2,
OII(\ z1) . 14

Since A = 0 and Az; is a second order term in the enlarged space (\, 21, 22),
then there is no linear term in A in the linear part of the center manifold.
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|

Hence, the linear part of the center manifold is of the form z; = ﬁ[l z1, and
its i—th component is 25 ; = ﬁgl]zl, fori=1,---,n—1. Using (14) we obtain
that ﬁ[ll] = —% and ﬁ?] =0,for2<i<n-1.

Similarly for X7 , the center manifold is represented by 2o = II (A 21).

Its linear part is given by 20 = I (21, whose components are defined by
ﬁlm :—k’Z—ll and ﬁim =0,for2<i<n-1.

Since A, has no eigenvalues on the imaginary axis, and ks ; is the product
of all the eigenvalues of A, then kaq #0.

The center manifolds W° and W¢ intersect along the line z; = 0. Indeed,
: 5 O*TI(\,21) _ *II(M,z1) _
since A = 0, then =53 |x=0,z,=0 = 0 and =53 |x=0,:,=0 = 0, for k > 1.
So, TT(A, 21)|2,—0 = 0 and II(), z1)|+,—0 = 0, for all \.

Hence, if we slice them along the line z; = 0 and then glue the part of w*
for which z; > 0 with the part of W¢ for which z; < 0, along this line, we
deduce that in an open neighborhood of the origin, D, the piecewise smooth
system (13) has a piecewise smooth center manifold W,.. The linear part of
the center manifold W, is represented by z, = IT!'z;. The i — th component
of 22, 22, is given by

2o = Hl[l](zl)zla (15)
with %
H{l](zl) = —# and Hlll](zl) =0, fori > 2. (16)
2,1
o

Using (11) and (15), the reduced dynamics on the center manifold is given
by
2 = Az + ¢(ﬁ[11])2% + O(Z?), 21 20, (17)
Az + S(IIM)22 + 0(2)), 21 <0,
with @ the function defined by #(X) = 8 + X + §; X2,
The following theorem shows that the origin of the system (17) can be
made practically stable, for small A > 0, and asymptotically stable if A = 0.

Theorem 3. Consider system (11) with v* — 438, > 0, then, the piecewise
linear feedback (12) practically stabilizes the system around the origin for small
A > 0, and locally asymptotically stabilizes the system when A = 0.

Proof. See appendix. o

If we choose ﬁ[ll] and T such that @(ﬁ[ll]) = —¢(I1") = &, the dy-
namics (17) will be of the form

21 = pzy — $olz1|z1 + O(Z?), (18)
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with u € IR a parameter. The equation (18) is the normal form of the bird
foot bifurcation, introduced by Krener in [20].

If &9 > 0, the equation (18) corresponds to a supercritical bird foot bifur-
cation. For p < 0, there is one equilibrium at z; = 0 which is exponentially
stable. For p > 0, there are two exponentially stable equilibria at z; = ﬁ:(pio,
and one exponentially unstable equilibrium at z; = 0. For u = 0, there is one
equilibrium at z; = 0 which is asymptotically stable but not exponentially
stable.

If &y < 0, the equation (18) is an example of subcritical bird foot bifur-
cation. For p < 0, there is one equilibrium at z; = 0 which is exponentially
stable and two exponentially unstable equilibria at z; = ﬂ:d%o. For pu > 0,
there is one exponentially unstable equilibrium at z; = 0. For g = 0, there is
one equilibrium at z; = 0 which is unstable.

Notice that both normal forms are invariant under the transformation
z1 — —z; and so the bifurcation diagrams can be obtained by reflecting the
upper or lower half of the bifurcation diagram of a transcritical bifurcation.
In both cases the bifurcation diagrams look like the foot of a bird.

In the A — 21 plane, the dynamics (17) are in the form (18) with &, > 0.
A supercritical birdfoot bifurcation appears at (A, z1) = (0,0). For A > 0, we
have 3 equilibrium points : the origin and +e (corresponding to the solutions
of 21 = 0). The origin is unstable for A > 0, and the two other equilibrium
points are stable (cf. Figure 1). The practical stabilization of the system is
made possible by making the two new equilibrium points sufficiently close to
the origin, i.e. by choosing @(ﬁ[ll]) and 45(1?1{1]) sufficiently large.

If a quadratic feedback was used instead of (12), i.e.

u= Kz + Ka2s +Z1Tbe21+O(Z?), (19)

we can prove that the closed loop dynamics has a center manifold. Moreover,
by appropriately choosing K, the reduced dynamics on the center manifold
will have the form

2 = Az — 8123 + 0(2}), (20)

with @; > 0, by appropriately choosing @ ss.

The equation (20) is the normal form of a system exhibiting a supercritical
pitchfork bifurcation. By using a similar analysis as above, we deduce that
the solution of the reduced dynamics converges to the equilibrium points e =

+ 4%1, and that the closed-loop system (11)-(19) is practically stabilizable.

The reason of the choice of a piecewise linear feedback instead of a
quadratic feedback is that it is preferable to have a supercritical bird foot
bifurcation than a supercritical pitchfork bifurcation. This is due to the fact
that the stable equilibria in a system with a bird foot bifurcation grow like u
not like /i1 as in the pitchfork bifurcation*, and that the bird foot bifurcation

4 Let us recall that the normal for of a pitchfork bifurcation is 21 = pz — lef’,
with p € IR the parameter.
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is robust to small quadratic perturbations, while these transform the pitchfork

bifurcation to a transcritical one.

epsilon | _.._.__ T

—epsilon [

Figure 1

4 Appendix

Proof of Theorem 3

1
Consider the Lyapunov function V(z;) = 52%’ and let g1

. Then, from (17), we have

A

A by
Ey == ———7
T @M

_ [ e@Ny o - e1)2? + 00, 2 >0,

B {45(1?{”)@1 — )22 +0(z}), 21 <0,

e Practical Stabilization for A > 0 "

A
&(")

and

(21)

By choosing® ﬁ[ll] and INIP] such that &(17;") < 0 and @(INIP]) > 0, we
get €1 > 0 and €2 < 0. This choice is always possible since & is a second

5 This choice is made by fixing the parameters k1 and k; of the feedback (12) linked

to ﬁ[lll and Iﬂl] through (16).
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order polynomial whose discriminant, y? — 436, is positive ; so, & takes both
positive and negative values. In this case, V <0forz; >e and 21 < €9, and
VZOfOI'Zl =£1 0r 2y = é€s.

In the following, and without loss of generality, we choose ﬁ[ll] and ]ﬂl]
such that ¢(ﬁ[11]) = —@(ﬁl[l]), S0 €] = —e3 2 ¢, with 0 < & <7, and r is the
radius of B,., the largest closed ball contained in D.

Let 2y and {2, be two sets defined by (21 =|e, +r] and 25 = [—r, —€].

If 21 (0) € 2, U 2, and since V < 0 on 2 U (2, then, from (4) and (5),
V satisfies )

V < —as(|z]]) < —as(az ' (V). (22)
Since as and as are a class K functions, then as (a;l) is also a class K function.

Hence, using the comparison principle in [24, lemma 4.4], there exists a class
KL function n such that

V(z1(t)) < n(V(21(0),1))- (23)

The sets 2, = [0,¢] and 2, = [—¢,0] have the property that when a
solution enters either set, it remains in it. This is due to the fact that V is
negative definite on the boundary of these two sets. For the same reason, if
21(0) € 2} (resp. 21(0) € 22), then 2, (t) € 2; (resp. z1(t) € 23), for t > 0.

Let T(c) be the first time such that the solution enters 2; U 2, = B..
Using (4) and (23), we get that for 0 <t <T'(¢),

e <[la@®)] < a7 V(21 (1) < a7 (n(V (21(0),8))) £ ((21(0), 1)

The function ( is a class KL function, since a; is a class K function and n
a class KL function. Since ( is a class XL function, then T'(¢) is finite. Hence,
21(t) € 21U s, for t > T(e).

Hence, for z; € B,., the solution satisfies

dg, (21(t)) < ((dg. (21(0)), 1) (24)

So, in B,., the origin is locally e—practically stable.
Now, consider the whole closed-loop dynamics

n—1

5 = A2y + B2+ yzze0 + Z 0 zgl +0(z1, 22)%,

i=1
n—1 n—1

29 = BoKy2z1 + Ayzo + Z Z 0{ z;j eg + 0(21,22)3.
i=1 j=i+2

Let wy = 21, wy = 2o — TNz, and w = (wy,ws)T. Then, the closed-loop
dynamics is given by

by = Awy + ¢(ﬁ[11])w% + N1 (wr, we), for wy > 0,
Aw; + @(Iﬂl])wf + N (wy, wy), for wy < 0.
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" Asws + Na(wy, wy), for wy > 0,
2 Aswy + Nay(wy,w,), for wy < 0.

Let _
Ni(wy,w2), wy >0,

-/\/i(wlan) = {M(’UH,U}Q), wy < 0’ for ¢ = 1727

with Nl(wl,’ll}g) = (7 + 261]7{1])111111)2,1 + e wj ; and Ny (wy,wy) =

E E] i+2 z ’11}2 J 62
Slnce Ni(w1,0) = 0 and 8N £(0,0) = 0 (i = 1,2), then in the domain
llw|]2 < o, N7 and N satlsfy

./V.i(’wl,’U)Q) SEinQHa i:1727

where 1 and k2 can be arbitrarily small by making o sufficiently small.
Since A, is Hurwitz, there exists a unique P such that AT P+ PA, = —
Let V be the following composite Lyapunov function

—w? 4+ wl Pw,.

V(wl, w2) = 2

The derivative of V along the trajectories of the system is given by

V(wl,wg) = ’/T(’LU1) +1U1N1(U)1,U)2) +w2T(AQTP+PA2)w2 +2w2TP/\f2(w1,w2),

with 7(w) = (A + ST )w, )w? for wy > 0 and 7(wy) = (A + S, )w?
for w; < 0.
For w; € {2 U (2, then 7(w1) < —ag(||w]|) according to (22). Hence

< —as(|[wy]]) + wiNi (wi,w2) + w3 (PAy + PAy)ws + 2wy PNa(wy,ws),
< —(=k1v + 14 2622 maz (P))|[w2]] + s2[ws|| — Kal[w2]],
S ( I<.‘,1V—I<.‘,2+1—2K,2>\mam( ))||w2||,

V(U)l y U)2)

with v = max g, .u, en,u0,} [Jwi]]-
By choosing k1 and ks such that k12 4+ £2(1 + 2\ (P)) < 1, then

V(wl, w2) < 0.
Hence, for w; € 1 U 2y, V(wl,w2) < 0. So, there exists a class KL
function 7 such that
[w(®)[| < 7(]|lw(0)]],?). (25)
When w; € £2; U 25, and by considering w; as an input of the system
Wy = Asws +/\f2(w1,w2),

we deduce that ||w;|| is bounded, since A, is Hurwitz. Hence, for w; € £2,U(2;,
there exists € such that
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lw(®)]| <& (26)

JFrom (25)-(26) we obtain

dp, (w(t)) < 71(dp, (w(0)),1). (27)

So the origin of the whole dynamics is locally £—practically stable.
e Asymptotic Stabilization for A = 0
In this case, generically, we have a transcontrollable bifurcation [17, 21].

Since 1 = 5 = 0, the sets £2; and 2, reduce to the origin. Hence, the origin
of the reduced closed-loop system is asymptotically stable, since the solution
converges to ;U2 = {0}. We deduce that the origin of the whole closed-loop
dynamics is asymptotically stable by applying the center manifold theorem

[5].
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