MANIFOLDS

- (1) What is a manifold of dimension n?
- (2) What is an n-dimensional manifold with boundary?
- (3) Show that the circle S¹ = {(x, y) ∈ ℝ² | x² + y² = 1} is a 1-dimensional manifold, by showing that the following four open sets are homeomorphic to open subsets of ℝ and every point of S¹ is contained in one of these four open sets:

$$U_{+} = \{(x, y) \in S^{1} \mid x > 0\}, \qquad U_{-} = \{(x, y) \in S^{1} \mid x < 0\}$$
$$V_{+} = \{(x, y) \in S^{1} \mid y > 0\}, \qquad V_{-} = \{(x, y) \in S^{1} \mid y < 0\}$$

- (4) Show that the sphere S² = {(x, y, z) | x² + y² + z² = 1} is a 2-dimensional manifold in a similar manner using six open sets. Try to generalize these two cases to the n-sphere: Sⁿ = {(x₁, ..., x_{n+1}) | x₁² + ... + x_{n+1}² = 1}.
 (5) Show that the semicircle C = {(x, y) ∈ ℝ² | x² + y² = 1, y ≥ 0} is a 1-
- (5) Show that the semicircle $C = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1, y \ge 0\}$ is a 1dimensional manifold with boundary and the hemisphere $D = \{(x, y, z) \mid x^2 + y^2 + z^2 = 1, z \ge 0\}$ is a 2-dimensional manifold with boundary.
- (6) Suppose X is an *n*-dimensional manifolds with boundary. Let ∂X denote the set of points in the boundary of X. Show that ∂X is an (n-1)-dimensional manifold.
- (7) Explain what an *adjunction space* is (Lee Ch 3 p. 74).
- (8) Suppose X and Y are n-dimensional manifolds with boundary and the boundaries are manifolds ∂X and ∂Y respectively. Suppose there is a homeomorphism $f : \partial X \to \partial Y$. Prove that the adjunction space $X \cup_f Y$ is an n-dimensional manifold (no boundary).
- (9) Suppose we have a polygonal representation of a surface where each edge appears exactly twice. Show that the identification space is a 2-dimensional manifold.
- (10) Describe how we can write $S^3 \cong V_1 \cup_f V_2$ where V_1 and V_2 are solid tori $S^1 \times D^2$ and $f : \partial V_2 \to \partial V_1$ is a homeomorphism of the torus. Describe the homeomorphism f.
- (11) Find a way to decompose $S^1 \times S^2$ as the adjunction space of two solid tori, $S^1 \times S^2 \cong V_1 \cup_g V_2$ where $g : \partial V_2 \to \partial V_1$ is a homeomorphism of the torus boundary. What is the map g?