PROJECTIVE SPACES

The real n-dimensional projective space, $\mathbb{R} P^{n}$ is the quotient of $\mathbb{R}^{n+1} \backslash 0$ by the equivalence relation $\left(x_{1}, \cdots, x_{n+1}\right) \sim\left(\lambda x_{1}, \cdots, \lambda x_{n+1}\right)$ for $\lambda \in \mathbb{R} \backslash 0$. A typical way to represent $\mathbb{R} P^{n}$ is to use homogeneous coordinates as follows:

$$
\mathbb{R} P^{n}=\left\{\left[x_{1}: x_{2}: \cdots: x_{n}, x_{n+1}\right] \mid\left(x_{1}, x_{2}, \cdots, x_{n}, x_{n+1}\right) \in \mathbb{R}^{n+1} \backslash(0,0, \cdots, 0,0)\right\}
$$

where $\left[x_{1}: x_{2}: \cdots: x_{n}: x_{n+1}\right]=\left[\lambda x_{1}: \lambda x_{2}: \cdots: \lambda x_{n}: \lambda x_{n+1}\right]$.
(1) Explain how $\mathbb{R} P^{n}$ can be thought of as the space of lines in \mathbb{R}^{n+1} that pass through the origin.

Let $X_{1}, X_{2} \subset \mathbb{R} P^{n}$ be the subsets

$$
\begin{aligned}
& X_{1}=\left\{\left[x_{1}: \cdots: x_{n+1}\right] \mid x_{1}=1\right\} \\
& Y_{1}=\left\{\left[x_{1}: \cdots: x_{n+1}\right] \mid x_{1}=0\right\}
\end{aligned}
$$

(2) Show that $\mathbb{R} P^{n}=X_{1} \cup Y_{1}$.
(3) Show that X_{1} is homeomorphic to \mathbb{R}^{n}.
(4) Show that Y_{1} is homeomorphic to $\mathbb{R} P^{n-1}$.

Inductively define $X_{k}, Y_{k} \subset Y_{k-1}$ for $2 \leq k \leq n+1$ by

$$
\begin{gathered}
X_{2}=\left\{\left[x_{1}: \cdots: x_{n+1}\right] \mid x_{1}=\cdots=x_{k-1}=0, x_{k}=1\right\} \\
Y_{2}=\left\{\left[x_{1}: \cdots: x_{n+1}\right] \mid x_{1}=\cdots=x_{k-1}=x_{k}=0\right\}
\end{gathered}
$$

(5) Show that $\mathbb{R} P^{n}=X_{1} \cup X_{2} \cup \cdots \cup X_{n} \cup X_{n+1}$.
(6) Show that X_{k} is homeomorphic to \mathbb{R}^{n-k+1}.
(7) Conclude that $X_{1} \cup X_{2} \cup \cdots \cup X_{n} \cup X_{n+1}$ gives a cell decomposition of $\mathbb{R} P^{n}$. How many k-cells are there for each k ?
(8) Explain how to get the polygonal presentation for $\mathbb{R} P^{2}$ from this cell decomposition.

Analogously, using the same equations, just changing real numbers to complex numbers, we can define the complex n-dimensional projective space $\mathbb{C} P^{n}$ as the quotient of $\mathbb{C}^{n+1} \backslash 0$ by the equivalence relation $\left(z_{1}, \cdots, z_{n+1}\right) \sim$ $\left(\lambda z_{1}, \cdots, \lambda z_{n+1}\right)$ for $\lambda \in \mathbb{C} \backslash 0 . \mathbb{C} P^{n}$ also has homogeneous coordinates:
$\mathbb{C} P^{n}=\left\{\left[z_{1}: z_{2}: \cdots: z_{n}, z_{n+1}\right] \mid\left(z_{1}, z_{2}, \cdots, z_{n}, z_{n+1}\right) \in \mathbb{C}^{n+1} \backslash(0,0, \cdots, 0,0)\right\}$ where $\left[z_{1}: z_{2}: \cdots: z_{n}: z_{n+1}\right]=\left[\lambda z_{1}: \lambda z_{2}: \cdots: \lambda z_{n}: \lambda z_{n+1}\right]$.
(9) Use the analogous decomposition of $\mathbb{C} P^{n}$ into $X_{1} \cup \cdots \cup X_{n+1}$. What is the dimension (over the reals) of each cell?

