PROJECTIVE SPACES

The real n-dimensional projective space, $\mathbb{R}P^n$ is the quotient of $\mathbb{R}^{n+1} \setminus 0$ by the equivalence relation $(x_1, \dots, x_{n+1}) \sim (\lambda x_1, \dots, \lambda x_{n+1})$ for $\lambda \in \mathbb{R} \setminus 0$. A typical way to represent $\mathbb{R}P^n$ is to use homogeneous coordinates as follows:

$$\mathbb{R}P^{n} = \{ [x_{1} : x_{2} : \dots : x_{n}, x_{n+1}] \mid (x_{1}, x_{2}, \dots, x_{n}, x_{n+1}) \in \mathbb{R}^{n+1} \setminus (0, 0, \dots, 0, 0) \}$$

where $[x_{1} : x_{2} : \dots : x_{n} : x_{n+1}] = [\lambda x_{1} : \lambda x_{2} : \dots : \lambda x_{n} : \lambda x_{n+1}].$

(1) Explain how $\mathbb{R}P^n$ can be thought of as the space of lines in \mathbb{R}^{n+1} that pass through the origin.

Let $X_1, X_2 \subset \mathbb{R}P^n$ be the subsets

$$X_1 = \{ [x_1 : \dots : x_{n+1}] \mid x_1 = 1 \}$$

$$Y_1 = \{ [x_1 : \dots : x_{n+1}] \mid x_1 = 0 \}$$

- (2) Show that $\mathbb{R}P^n = X_1 \cup Y_1$.
- (3) Show that X_1 is homeomorphic to \mathbb{R}^n .
- (4) Show that Y_1 is homeomorphic to $\mathbb{R}P^{n-1}$. Inductively define $X_k, Y_k \subset Y_{k-1}$ for $2 \le k \le n+1$ by

$$X_2 = \{ [x_1 : \dots : x_{n+1}] \mid x_1 = \dots = x_{k-1} = 0, x_k = 1 \}$$

$$Y_2 = \{ [x_1 : \dots : x_{n+1}] \mid x_1 = \dots = x_{k-1} = x_k = 0 \}$$

- (5) Show that $\mathbb{R}P^n = X_1 \cup X_2 \cup \cdots \cup X_n \cup X_{n+1}$. (6) Show that X_k is homeomorphic to \mathbb{R}^{n-k+1} .
- (7) Conclude that $X_1 \cup X_2 \cup \cdots \cup X_n \cup X_{n+1}$ gives a cell decomposition of $\mathbb{R}P^n$. How many k-cells are there for each k?
- (8) Explain how to get the polygonal presentation for $\mathbb{R}P^2$ from this cell decomposition.

Analogously, using the same equations, just changing real numbers to complex numbers, we can define the *complex n-dimensional projective space* $\mathbb{C}P^n$ as the quotient of $\mathbb{C}^{n+1}\setminus 0$ by the equivalence relation $(z_1, \cdots, z_{n+1}) \sim$ $(\lambda z_1, \dots, \lambda z_{n+1})$ for $\lambda \in \mathbb{C} \setminus 0$. $\mathbb{C}P^n$ also has homogeneous coordinates:

$$\mathbb{C}P^{n} = \{ [z_{1} : z_{2} : \dots : z_{n}, z_{n+1}] \mid (z_{1}, z_{2}, \dots, z_{n}, z_{n+1}) \in \mathbb{C}^{n+1} \setminus (0, 0, \dots, 0, 0) \}$$

where $[z_1:z_2:\cdots:z_n:z_{n+1}] = [\lambda z_1:\lambda z_2:\cdots:\lambda z_n:\lambda z_{n+1}].$

(9) Use the analogous decomposition of $\mathbb{C}P^n$ into $X_1 \cup \cdots \cup X_{n+1}$. What is the dimension (over the reals) of each cell?