MAT 145: Homework 6 Solution

Xiaochen Liu*

1. One possible answer is $A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \rightarrow F \rightarrow G \rightarrow H \rightarrow A$.

2. One possible example is K_{4}.
3. One possible example is K_{3}.
4. Existence is ensured by connectness of G. Now we prove uniqueness. Assume that v_{i} and v_{j} are connected by at least two different paths. For example, $v_{i} \rightarrow a_{1} \rightarrow \cdots \rightarrow a_{n} \rightarrow v_{j}$ and $v_{i} \rightarrow b_{1} \rightarrow \cdots \rightarrow b_{m} \rightarrow v_{j}$ are two different paths. Along the path of a 's from v_{i} to v_{j}, find the first vertex where it diverges from the path of b 's, i.e., the smallest k and ℓ such that $a_{k}=b_{\ell}$ and $a_{k+1} \neq b_{\ell+1}$. We continue walk along the path of a 's, find the first vertex where the two paths meet again, i.e., the smallest $p>k$ such that $a_{p-1} \neq b_{q-1}$ and $a_{p}=b_{q}$. Then there are two disjoint paths connecting $a_{k}\left(=b_{\ell}\right)$ and $a_{p}\left(b_{q}\right)$. So, there is a cycle in G. A contradiction.
5. Suppose G^{\prime} is obtained by adding an edge $u v$ to G and $u v \notin E(G)$. In G, u and v are already connected by a path as G is connected. So, there are two disjoint paths connecting u and v, thus there is a cycle.
6. Consider the six 4 -vertex trees on page 145 . For the leftmost one, for example, call it G_{1}. Add a new vertex to G_{1}. This new vertex may connect to any of the four existing vertices. So G_{1} has four 'offspring'. Do the same thing for the other five trees. Figures omitted.

[^0]7. Let e be the number of edges in T, v be the number of vertices in T, v_{j} be the number of vertices with degree j in T, for $j=1,3$. Then we have $e=v-1, e=2 v=v_{1}+3 v_{3}, v_{1}+v_{3}=v$ and $v_{3}=10$. Solving this linear system gives $v_{1}=12$.
8. One possibility is as follow.

9. 0103553.
10. 310442552.

[^0]: *xchliu@math.ucdavis.edu

