Practice Midterm 1

Math 145, Spring 2019

Name: Solutions

Every solution must contain an explanation written in words supporting your numerical solution to receive credit.

If you need extra space for your solutions, there is an extra page at the back of the exam. If you need extra space for any problem, write CONTINUED IN EXTRA SPACE on the page where the problem is given to you. In the extra space write the problem number that you are solving in that space.

Problem 1: An hair dresser is planning which days she will cut her clients' hair. She needs to choose 20 out of the 30 days in April to work cutting her clients' hair. She does not want to work more than 1 of the 4 Sundays in April. How many ways are there for her to schedule her working days with clients, with the constraint that she will not work more than one Sunday?

There are 30 days in April and 4 Sundays.
The possible schedules Split into two cases:
Case 1:
The schedule includes exactly one of the Sundays.
Then there are 4 choices for the I Sunday
and $26=30-4$ choices fur the other 19 working days.
Therefore there are a total of $\binom{4}{1} \cdot\binom{26}{19}$ possible schedules in case 1.

Case 2: The schedule 17 clues no sundays.
Then these are $26=30-4$ possible choices for the 20 working days
So there one $\binom{26}{20}$ possible schedules in case 2.
There are no schedules in both case 1 and case 2.
In total there are $\binom{4}{1}\binom{26}{19}+\binom{26}{20}-0=\sqrt{4\left(\frac{26!}{7!19!}\right)+\frac{26!}{6!20!}}$
possible ways for hen to plan her work schedule.

Problem 2: How many numbers from 1 and 100 are a multiple of at least one of the numbers $3,5,7$?

Let $A=\{$ multiples of 3 between $1+100\}=\{3.1,3.2, \ldots, 3.33\}$

$$
\begin{aligned}
& B=\{\text { multiples of } 5 \text { between } 1+100\}=\left\{5.1,5.2, \ldots, \begin{array}{l}
5.20 \\
C=\{\text { multiples of } 7 \text { between } 1+100\}=\{7.1,7.2, \ldots, 7.14\}
\end{array} .\left\{\begin{array}{l}
100 \\
C .18
\end{array}\right\}\right.
\end{aligned}
$$

Then $\quad|A|=33$
$|B|=20$ as indicated by calculations
$|C|=14$

$$
\begin{aligned}
& A \cap B=\{\text { multiples of } 3 \text { and } 5 \text { btw } 1+100\}=\{\text { multides of } 15 \text { twa } 1+100\} \\
&=\{15.1,15.2, \ldots, 15.6\} \\
& 90
\end{aligned}
$$

$$
\begin{aligned}
& A \cap C=\{\text { multiples of } 3 \text { and } 7 \text { btw } 1+100\}=\{\text { multiples of } 21 \text { btw } 1+100\} \\
&=\{21.1,21.2, \ldots, 21.4\} \\
& 84
\end{aligned}
$$

$$
B \cap C=\{\text { multiples of } 5 \text { and } 7 \text { bun } 1+100\}=\{\text { multiples of } 35 \text { b/wn } 1+100\}
$$

$$
=\{35 \cdot 1,35 \cdot 2\}
$$

So

$$
\begin{aligned}
& |A \cap B|=6 \\
& |A \cap C|=4 \\
& |B \cap C|=2
\end{aligned}
$$

Finally, $A \cap B \cap C=\{$ multiples of 3 and 5 and 7$\}=\{$ multiples of 105 btw n $1+100\}=\varnothing$
By the inclusion exclusion principle

$$
\begin{aligned}
|A \cup B \cup C| & =|A|+|B|+|C|-|A \cap B|-|A \cap C|-|B \cap C|+|A \cap B \cap C| \\
& =33+20+14-6-4-2+0 \\
& =55
\end{aligned}
$$

and AuBuc is the collection of numbers blown $1+100$ which ane multiples of at least one of the numbers 3,5,7

Problem 3: A new cookie company is giving out 400 cookies for free to people passing by. Each person can take as many cookies as they want (possibly no cookies). At the end of the day, if there are any cookies left, the baker eats the rest. If 100 people pass by during the day, how many different ways are there for the cookies to be distributed?

400 cookies distributed to $100+1$ people customers baker
\$o er If we order the people by the time theyarrive, we just need to determine where the split points are between the 400 cookies.
Since some of the people may not want any cadries, some of the split points may occur in the same position.

There are 401 positions for the split points (including the positions before the first connie + of kr the last cook re)
Let $S_{1}, S_{2}, \ldots, S_{100}$ be the 100 split points where si divides the cookies for the $i^{\text {ithersen }}$ parson from the cookies for the $(i+1)^{\text {th }}$ person.

Let $t_{1}, t_{2}, \ldots, t_{100}$ be given be the formula

$$
\otimes\left\{\begin{array}{lr}
t_{1}=s_{1} & \text { Then } 10 \leq s_{1} \leq s_{2} \leq \ldots \leq s_{100} \leq 401 \\
t_{2}=s_{2}+1 & 10 \\
\vdots & 1 \leq t_{1}<t_{2}<\ldots<t_{100} \leq 500
\end{array}\right.
$$

The number of possible chairs of $\left\{\left(s_{1}, s_{2}, \ldots, s_{100}\right) \mid 1 \leq s_{1} \leq s_{2} \leq \ldots \leq s_{100} \leq 401\right.$? is the same as the number of $\left\{\left(t_{1}, t_{2}, \ldots, t_{100}\right) \mid 1 \leq t_{1}<t_{2}<\ldots<t_{100} \leqslant 500\right\}$ because theyoue in $1-1$ correspondence by the bijection θ. The number of t_{1}, \cdots, t_{100} is $\binom{500}{100}$ becusecthere is $\begin{gathered}4 \\ \text { no repetition }\end{gathered} s^{4}$ the number of cookie distributions is $\binom{500}{100}$.

Problem 4: There are n students in class. We know that k are in their $1^{s t}$ year at UC Davis and m are in their $2^{\text {nd }}$ year at UC Davis. Show that both sides of the following equation give ways of counting the number of ways that the students can be split up into $1^{s t}$ year students, $2^{\text {nd }}$ year students, and students who have been at. UC Davis for at least 3 years.

$$
\underbrace{\binom{n}{k}}_{\text {LHS }}\binom{n-k}{m}=\underbrace{\binom{n}{n-k-m}\binom{k+m}{m}}_{\text {RUS }}
$$

IHS: $\binom{n}{k}$ is the number of ways of choosing which k students of ail n students are $1^{\text {st }}$ years
If we take out those $1^{\text {st }}$ years there are $n-k$ students left and wo the number of ways to choose m of them as $2^{n d}$ years is $\binom{n-k}{m}$
Therefore there are $\binom{n}{k} \cdot\binom{n-k}{m}$ total ways of distributing which Students are the $K 1^{\text {st }}$ years and which are the $m 2^{\text {nd }}$ years. (The rest are $3^{\text {rd }}$ year or above)
RHS: If there are $k 1^{\text {st }}$ years and $m 2^{\text {nd }}$ years there are $n-k-m$ students in $3^{r d}$ year or above.
There are $\binom{n}{n-4-m}$ ways of choosing which $n-k-m$ students of the n ital students are in $3^{\text {rd }}$ year or above.
Once we remove the $n-h-m$ students in 3rdyeer or abase, there are $k+m$ sinclents left. m of them ore $2^{n d}$ years so there are $\binom{k+m}{m}$ wraps of choosing which ore the $2^{n d}$ years
6 Once we know who is in $3^{\text {rd year or above } y \text { who is in } 2^{\text {ad }} \text { year, }}$ the remaining k must be in their $1^{\text {st }}$ your.
Therefore there one $\binom{n}{n-k-m}\binom{k+m}{m}_{5}$ ways of determining who is in $1^{s 1}, 2^{n d}$, and $3^{\text {rd }}+$ years.

Problem 5: Suppose you have a ladder with n rungs. At every step you can go up 1 rung at a time, 2 rungs at a time, or 3 rungs at a time. Define the correct number of initial conditions and a recurrence formula to determine the numbers L_{n} that count the number of different ways to climb the ladder.
$L_{1}: 1$ one rung: only are way to go up: take I Irung step $\Rightarrow L_{1}=1$
$L_{2}: F 2$ rugs: 2 ways to go up: " take 2 Ironing steps

- take 12 rung step

$$
\Rightarrow L_{2}=2
$$

$L_{3}:$

- take 3 lrung steps
- take 12 rung step then 1 Inuystep
- take 1 I one step then 12 ming step
- take 13 ring step

Ln: Case 1: First step is a lrung step: then there are n-1 rungs left so the number of ways to go up the rest is L_{n-1}

Case 2: First step is a 2 rug step: Then There are $n-2$ rugs left So the number of ways to go up the rest is L_{n-2}
Case 3: First step is a 3 rug step: Then there are n-3 rings left do the number of ways to go up the rest is L_{n-3}
$\Rightarrow L_{n}=L_{n-1}+L_{n-2}+L_{n-3} \&$ recursive formula $L_{1}=1, L_{2}=2, L_{3}=4 \&$ initial conditions

