
Homework 1

Math 145, Spring 2019

1 Counting

1. In a game, you roll one 6 sided dice, one 8 sided dice, and one 20 sided dice. How
many different possible outcomes are there for the resulting roll? (We consider each
dice differently so if the six sided dice rolls a 1, the eight sided dice rolls a 2, and the
20 sided dice rolls a 3, this is considered a different outcome from the situation where
the six sided dice rolls a 2, the eight sided dice rolls a 1, and the 20 sided dice rolls a
3.) Explain how you got your answer in words.

Solution: Each dice is rolled independently, so the total number of outcomes is the
product of the number of outcomes for each dice. Therefore the number of possible
outcomes for the rolls of all three dice is 6 · 8 · 20 = 960.

2. Ten people arrive early to buy tickets for a concert. They form an ordered line. How
many ways are there for the 10 different people to stand in the line? Explain how you
got your answer in words.

Solution: For the first place in line, there are 10 possible people which can stand in
it. Once that person is chosen, there are 9 people left. Any of those 9 people can stand
in the second place in line. Continuing, when we reach the nth place in line, there are
11− n people left who can stand in that spot until we reach the 10th spot where there
is exactly one person left to stand in the 10th spot. Therefore the total number of ways
the 10 people can stand in line is: 10! = 10 · 9 · . . . · 2 · 1.

3. Your friend has 8 shiny new quarters which are indistinguishable from each other. She
flips all 8 of them and leaves them face up on the table in front of you. You cannot tell
the difference between the different quarters. How many possible different resulting
states can there be of the 8 quarters on the table? Explain how you got your answer
in words.

Solution: Because we cannot tell the difference between different quarters, at the end,
we can only tell how many heads versus how many tails are face up on the table. If we
know there are n quarters with the heads face up, there must be 8 − n quarters with
the tails face up. Therefore the total number of possible states is the possible numbers
of heads face up which can be, 0, 1, 2, · · · , 7, 8 so there are 9 total possible states for the
8 quarters on the table.
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4. Alice and Bob are team captains for a soccer match. There are 12 other kids who want
to play. Alice and Bob take turns choosing the remaining six kids for their team in
order based on the position that will be filled. (For example, we consider the resulting
states different if Alice chooses Sam as her first pick versus choosing Sam as her third
pick.) How many different ways are there for all of the positions on the two teams to
be filled? Explain how you got your answer in words.

Solution: Each position is different, so this is similar to the problem of people standing
in a line. For Alice’s first pick there are 12 kids to choose from. For Bob’s first pick there
are 11 remaining kids to choose from. Alice’s second pick has 10 remaining choices,
and so on. Therefore the total number of different ways to fill all of the positions on
both teams is 12! = 12 · 11 · . . . · 2 · 1.

5. Caroline and Doug are team captains for a dodgeball match. There are 10 other kids
who want to play. Caroline and Doug take turns choosing kids for their team so at
the end they each choose five kids for their team. The order in which kids were chosen
does not affect the game. The only thing that matters is which team they are on. How
many possible ways are there to split up the 10 kids into Caroline and Doug’s teams?
Explain how you got your answer in words.

Solution: In this case, the order in which the kids are chosen does not affect the end
state for how they play the game. Therefore, the only thing that matters is who is on
Caroline’s team and who is on Doug’s team. We know that each team will have five
kids. If we know which five kids are on Caroline’s team, then we know the remaining
five will be on Doug’s team. Therefore we just need to count how many ways there are
to choose 5 of the 10 kids to be on Caroline’s team. Since the order does not matter
there are (

10

5

)
=

10!

5!5!
=

10 · 9 · 8 · 7 · 6
5 · 4 · 3 · 2 · 1

possibilities. (If the order mattered there would be 10 · 9 · 8 · 7 · 6 possible ways, but
then we are over counting by a factor equal to the number of reorderings of those 5
people and the number of reorderings is 5! = 5 · 4 · 3 · 2 · 1.)

6. A tennis tournament has 12 participating teams. Each match faces two teams against
each other. If team A faces team B in a match, we consider this the same pairing as
if team B faces team A. If team A face team B on the first court, we consider this the
same pairing as if team A faces team B on the fourth court. How many ways are there
to pair up the 12 teams into 6 pairings? Explain how you got your answer in words.

Solution: First, imagine there are 6 different courts and each court has two sides.
We will first count how many ways there are to assign the 12 teams to the 12 sides of
the different courts: this will be 12! = 12 · 11 · . . . · 2 · 1–this will be an overcount of
the number of pairings of the teams. One source of overcounting comes from the fact
that we can take the two teams on court i and swap them both with the two teams on
court j where i, j ∈ {1, 2, 3, 4, 5, 6}. This means we are overcounting by a factor of 6!
which is the number of reorderings of the 6 courts. This gives 12!

6!
= 12 · 11 · 10 · 9 · 8 · 7

possible pairings, but we are still overcounting in one more way. If we look at court 1
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and swap which team is on which side then we consider the resulting state to be the
same. Similarly we can switch the sides of the two teams on courts 2, 3, 4, 5, and 6.
Therefore we are overcounting by a factor of 26. So the total number of pairings of the
12 teams is

12!

6!26
=

12 · 11 · 10 · 9 · 8 · 7
26

= 3 · 11 · 5 · 9 · 7.

2 Sets

7. True or false?

(a) x is an element of the set {{x, y}, {z}, 4}.
False. The elements of the set are: {x, y}, {z}, and 4.

(b) {{z}, 4} is a subset of the set {{x, y}, {z}, 4}.
True, because both elements of the subset: {z} and 4, are elements of
the set

(c) The integers are a subset of the real numbers.

True, because every element of the integers is an integer which is a real
number.

8. Prove that if A, B, and C are sets then (A ∪B) ∪ C = A ∪ (B ∪ C).

Solution: First, suppose x ∈ (A ∪ B) ∪ C. Then by definition, either x ∈ (A ∪ B)
or x ∈ C. If x ∈ (A ∪ B) then by definition, x ∈ A or x ∈ B. If x ∈ A then
x ∈ A ∪ (B ∪ C). If x ∈ B then x ∈ (B ∪ C) therefore x ∈ A ∪ (B ∪ C). If x ∈ C
then x ∈ (B ∪C) so x ∈ A∪ (B ∪C). Therefore in all possible cases, x ∈ A∪ (B ∪C).
Therefore (A ∪B) ∪ C ⊆ A ∪ (B ∪ C).

The other direction is similar: suppose y ∈ A ∪ (B ∪ C). Then either y ∈ A or
y ∈ (B ∪ C). If y ∈ A then y ∈ (A ∪ B) so y ∈ (A ∪ B) ∪ C. If y ∈ (B ∪ C) then
either y ∈ B or y ∈ C. If y ∈ B then y ∈ (A ∪ B) so y ∈ (A ∪ B) ∪ C. If y ∈ C then
y ∈ (A ∪B) ∪ C. Therefore A ∪ (B ∪ C) ⊆ (A ∪B) ∪ C.

Since we have both subset inclusions, the two sets must be equal.

9. Prove that if A, B, and C are sets then A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

Solution: Suppose x ∈ A ∩ (B ∪ C). Then, by definition, x ∈ A and x ∈ (B ∪ C).
Therefore x ∈ A and either x ∈ B or x ∈ C. If x ∈ A and x ∈ B then x ∈ A ∩ B. If
x ∈ A and x ∈ C then x ∈ A∩C. Therefore if x ∈ A∩ (B∪C) then either x ∈ (A∩B)
or x ∈ (A∩C), so x ∈ (A∩B)∪(A∩C). This shows that A∩(B∪C) ⊆ (A∩B)∪(A∩C).

For the other direction, suppose x ∈ (A ∩ B) ∪ (A ∩ C). Then either x ∈ (A ∩ B) or
x ∈ (A∩C). If x ∈ (A∩B) then x ∈ A and x ∈ B, therefore x ∈ A and x ∈ (B∪C) so
x ∈ A∩ (B∪C). If x ∈ A∩C then x ∈ A and x ∈ C, therefore x ∈ A and x ∈ (B∪C),
so x ∈ A∩ (B ∪C). Therefore we have shown that every element of (A∩B)∪ (A∩C)
is an element of A ∩ (B ∪ C), i.e. (A ∩B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C).

Since we have both subset inclusions, the two sets must be equal.
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10. There are seven gymnasts at a competition: Amanda, Dorothy, Gabby, Jacquelyn,
Kelly, Madison, and Simone. One is chosen for the gold medal, one for silver, and
one for bronze. What are the number of possibilities for the winning gold, silver, and
bronze medalists? Explain how this problem can be understood as a question of the
number of ordered k-element subsets of a set S with n elements. What is the set S?
What are k and n?

Solution: Any of the 7 gymnasts could receive the gold medal. Of the remaining 6,
any of them could receive the silver medal. After the gold and silver medalists are
chosen, any of the remaining 5 could receive the bronze medal. Therefore there are
7 · 6 · 5 different possibilities for the winning gymnasts.

This can be viewed as a question of the number of ordered k = 3 element subsets of
a set S = {Amanda, Dorothy, Gabby, Jacquelyn, Kelly, Madison, and Simone} where
S has n = 7 elements.

11. Let S = {1, 2, 3, 4, 5, 6, 7, 8, 9}. How many (unordered) subsets does S have where the
size of the subset (number of elements of the subset) is any positive even number?
Explain how you got your answer in words.

Solution: A subset of S with a positive even number of elements can have 2, 4, 6, or
8 elements. The number of unordered k-element subsets of a set S with n elements is(

n

k

)
=

n!

(n− k)!k!
.

Therefore the number of 2 element subsets of S is
(
9
2

)
, the number of 4 element subsets

of S is
(
9
4

)
, the number of 6 element subsets is

(
9
6

)
, and the number of 8 element subsets

is
(
9
8

)
. Therefore the total number of unordered subsets with a positive even number

of elements is:

(
9

2

)
+

(
9

4

)
+

(
9

6

)
+

(
9

8

)
=

9 · 8
2

+
9 · 8 · 7 · 6

4 · 3 · 2
+

9 · 8 · 7
3 · 2

+
9

1
= 36 + 126 + 84 + 9 = 255

3 Induction

12. Prove by induction that the sum of the first n squares (1 + 4 + 9 + · · ·+ n2) is n(n +
1)(2n + 1)/6.

Solution: First we check the base case when n = 1. In that case the sum of the first
1 square is just 1. The formula agrees with this because

1(1 + 1)(2 · 1 + 1)

6
= 1.
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Now, we inductively assume that the formula holds for n− 1 so we inductively assume
that

1 + 22 + · · ·+ (n− 1)2 =
(n− 1)((n− 1) + 1)(2(n− 1) + 1)

6

=
(n− 1)(n)(2n− 1)

6

Now we want to calculate the sum of the first n squares. Using the inductive assumption
we have

1 + 22 + · · ·+ (n− 1)2 + n2 =
(n− 1)(n)(2n− 1)

6
+ n2

=
2n3 − 3n2 + n + 6n2

6

=
2n3 + 3n2 + n

6

=
n(2n2 + 3n + 1)

6

=
n(n + 1)(2n + 1)

6

Thus we have proven the formula by induction.

13. Prove by induction that

20 + 21 + · · ·+ 2n−1 = 2n − 1.

Solution: For the base case, n = 1 and we have 20 = 21 − 1 which is indeed true
because 1 = 2− 1.

Now, we inductively assume that

20 + 21 + · · ·+ 2n−2 = 2n−1 − 1.

Therefore

20 + 21 + · · ·+ 2n−2 + 2n−1 = 2n−1 − 1 + 2n−1 = 2(2n−1)− 1 = 2n − 1.

Thus we have proven the formula by induction.

14. Let a0 = 1 and let am+1 = 2am + 1 for all positive integers m ≥ 1. Find an explicit
formula for am (in terms of m only) and prove your formula is correct.

Solution: Writing out the first few terms:

a0 = 1, a1 = 2(1) + 1 = 3, a2 = 2(2(1) + 1) + 1 = 2(3) + 1 = 7,

a3 = 2(2(2(1) + 1) + 1) + 1 = 2(2(3) + 1) + 1 = 2(7) + 1 = 15
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Using this pattern, we conjecture that

am = 2m + 2m−1 + · · · 21 + 20

and using the previous problem, we guess that am = 2m+1 − 1.

Now to prove this guess, by induction, we first check the base case when m = 0. In
this case a0 = 1 = 2− 1 = 20+1 − 1.

Now inductively assume that am−1 = 2m − 1. Then

am = 2am−1 + 1 = 2(2m − 1) + 1 = 2m+1 − 2 + 1 = 2m+1 − 1.

So we have proven our predicted formula by induction.

15. Suppose you have a square piece of paper, and after 1 minute you cut it into four
squares. After the second minute you cut one of those squares into four squares. Every
minute you cut one square of paper into four squares. Prove that after n minutes, the
number of squares you have is 3n + 1.

Solution: First we check the base case when n = 0, meaning 0 minutes have passed.
This means we only have 1 square of paper which we have not cut at all. Since
1 = 3(0) + 1 this verifies the base case.

Next, we inductively assume that after n− 1 minutes, the number of squares of paper
you have is 3(n − 1) + 1. Now after the nth minute, we cut one of these squares into
four squares. Then we have 3(n − 1) + 1 − 1 squares from one minute ago that are
unchanged, plus four more squares that have been produced from the last square from
one minute ago. Therefore there are a total of

3(n− 1) + 1− 1 + 4 = 3n− 3 + 4 = 3n + 1

squares.
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