Homework 5

Math 145, Spring 2019

Every solution must contain an explanation written in words supporting your numerical solution to receive credit.

1. A bipartite graph $K_{m, n}$ is a simple graph with vertex set $V\left(K_{m, n}\right)=\left\{v_{1}, \cdots, v_{m}, w_{1}, \cdots, w_{n}\right\}$ such that there is an edge between every pair v_{i}, w_{j}, but there are no edges between two v_{i} 's and no edges between two w_{j} 's.
(a) What are the values of $\# V\left(K_{m, n}\right)$ and $\# E\left(K_{m, n}\right)$?
(b) What is the degree sequence for $K_{m, n}$ (the set of degrees for each of the vertices)?

Definition: The complete graph K_{n} is a simple graph with n vertices where there is an edge connecting every pair of vertices.
2. Determine the degree sequences for the following graphs:
(a) A linear graph with n vertices.
(b) K_{n}
(c) The 6 vertex graph shown here:

3. Let G be any simple graph with $\# V(G)=n$. Prove that G is isomorphic to a subgraph of K_{n}.
4. For each of the following sequences, either draw a simple graph which has that as a its degree sequence, or prove that there is no simple graph with that degree sequence.
(a) $(7,2,2,2)$
(b) $(3,3,2,2)$
(c) $(2,2,2, \cdots, 2)(n$ vertices each with degree 2 with $n \geq 3)$
(d) $(5,3,2,2,2,1)$
5. Let G_{1} and G_{2} be simple graphs which are isomorphic. Let $\left(d_{1}, d_{2}, \cdots, d_{n}\right)$ be the degree sequence of G_{1}. Prove that the degree sequence of G_{2} is a reordering of $\left(d_{1}, d_{2}, \cdots, d_{n}\right)$.
6. Prove that the following graphs are connected:
(a) The 3 vertex cycle:

(b) The following 4 vertex graph:

(c) K_{n}
7. An edge e of a connected graph G is called a cut edge if the graph G^{\prime} obtained by deleting that edge $\left(V\left(G^{\prime}\right)=V(G)\right.$ and $\left.E\left(G^{\prime}\right)=E(G) \backslash\{e\}\right)$ is not connected. Prove that if G_{1} and G_{2} are connected simple graphs which are isomorphic and if G_{1} has a cut edge, then G_{2} also has a cut edge.
8. For the following pairs of graphs G_{1} and G_{2}, either prove they are isomorphic by constructing the isomorphism, or prove they are not isomorphic.
(a) G_{1} and G_{2} below (choose your labels for the vertices and edges)

(b) G_{1} and G_{2} below (choose your labels for the vertices and edges)

(c) G_{1} and G_{2} below (choose your labels for the vertices and edges)

(d) G_{1} and G_{2} below (choose your labels for the vertices and edges)

(e) G_{1} and G_{2} below (choose your labels for the vertices and edges)

(f) G_{1} and G_{2} below (choose your labels for the vertices and edges)

9. For the following graphs, determine whether or not it has an Eulerian walk. If it has an Eulerian walk, find one (indicate your starting point and ending point and trace out the path of the walk next to the graph). If it does not have an Eulerian walk, prove it.
(a) G is

(b) G is

(c) G is

(d) G is K_{5}
(e) G is K_{6}

