Quiz

Math 145, Spring 2019

Name: Solutions

Problem 1: Let S be the set $\{1, 2, 3, 4, 5, 6\}$.

(a) How many subsets of S are there which contain 5? Prove and explain your answer in words.
Every subset of S containing 5 is a Subset of il. 2.3,4,63 union f5].
The number of subsets of fl. 2.3,4,63 is 2ⁿ where n = [fl. 2.3,4,63] = 5
Therefore there are 2⁵ subsets of S which contains.

(b) How many subsets of S are there of size 3 (i.e. subsets with exactly 3 elements)? Prove and explain your answer in words.

A subset is unorderdened and has nonrepeating elements so it is a dependent mordened problem. There are 6 elements in S to choose from and we want to choose exactly 3 of these 6 elements. Therefore the number of subsets of size 3 is $\binom{6}{3} = \frac{6!}{3! \, 3!}$ $\binom{6!}{3!}$ is the number of ordened subsets of size 3 and 8! is the number of reordering **Problem 2:** There are 15 cities you would like to visit, but over summer break you only have time to visit 5. How many different ways are there to visit 5 of these cities and then return to Davis (different orders count as different ways because your routes will be different)? Prove and explain your answer in words.

This is a	an o	-dered probl	em	ond	Since y	pu
do not w visiting it	once	to visit th	e san	ne c a de	ity again perdent	n after problem.
There are	15 14 13 12 11	choices for choices for	the	1st 2nd 3rt 4m 5m	city you city	l visit

so in total there are 15.14.13.12.11 possible trips you could take.

12

Problem 3: Prove that $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.

Problem 4: Prove by induction that the sum of the odd numbers

 $1 + 3 + 5 + \dots + (2n - 3) + (2n - 1) = n^2.$

Let's prove this by Induction.
Base case:
$$n=1$$
 so $2n+1=1$ so the
left hand side is just 1
the right hand side is $1^2 = 1$
so $2HS = 1 = 1 = RHS$ V.
Inductive hypothesis: Inductively assume
 $1+3+5+...+(2n-1)-3)+(2(n-1)-1) = (n-1)^2$
multiplying
things and $= 3$ $1+3+5+...+(2n-5)+(2n-3) = n^2-2n+1$
adding
 $2n-1+b = 7$ $1+3+5+...+(2n-5)+(2n-3) + (2n-1) = n^2$
 $= 3$ $1+3+5+...+(2n-5)+(2n-3)+(2n-1) = n^2$
So the formula holds for all n21.

Problem 5: For $0 \le k \le n$, we defined *n* choose *k* by the formula

$$\binom{n}{k} = \frac{n!}{(n-k)!k!}.$$

It is not obvious from the definition that this is an integer.

Prove that $\binom{n}{k}$ is an integer by induction on n.

To do this, it will be very helpful if you first prove (without induction just arithmetic) the formula

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

(You can use the formula without proving it for partial credit.)

First we prove this formula:

$$\binom{n-1}{k-1} + \binom{n-1}{k} = \frac{(n-1)!}{(n-k)!(k-1)!} + \frac{(n-1)!}{(n-k-1)!K!}$$
Finding a
common denominator = $\frac{K \cdot (n-1)!}{(n-k)!K!} + \frac{(n-k)(n-1)!}{(n-k)!K!}$
 $= \frac{(K+n-k)(n-1)!}{(n-k)!K!} = \frac{n!}{(n-k)!K!} = \binom{n}{k}$.
Now our inductive statement we want to prove is:
 $\binom{n}{k}$ is an integer for all $1 \le K \le n$.
Base case: $n = 1$. Then the options for k are only $10 K = 0$ or 1.
(d) $= \binom{n}{(1)} = \frac{1!}{0!1!} = \frac{1}{1} = 1$ is an integer. $\sqrt{1}$
Inductive. Now suppose $\binom{n-1}{k}$ is an integer for all $1 \le k \le n-1$.
Then $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ is the sum of 2 integer.
Whenever $K \le n-1$, so in these cases $\binom{n}{k}$ is an integer.
For the least case when $k = n$ we check directly
 $\binom{n}{n} = \frac{n!}{0!n!} = \frac{n!}{n!} = 1$ is an integer.

Extra Space: