Homework 1

Math 147, Fall 2018

1 Review of sets, functions, equivalence relations

- 1. Let A and B be sets, both of which have at least two distinct members. Prove that there is a subset $W \subset A \times B$ which is not the Cartesian product of a subset of A with a subset of B.
- 2. Let $A = \{a_1, a_2\}$ and $B = \{b_1, b_2\}$ be two sets each with two elements. Let $f : A \to B$ be the constant function such that $f(a) = b_1$ for each $a \in A$.
 - (a) Prove that $f^{-1}(f(\{a_1\})) \neq \{a_1\}$. [So $f^{-1}(f(X))$ and X are not always equal.]
 - (b) Prove that $f(f^{-1}(B)) \neq B$. [So $f(f^{-1}(X))$ and X are not always equal.]
 - (c) Prove that $f(\{a_1\} \cap \{a_2\}) \neq f(\{a_1\}) \cap f(\{a_2\})$. [So $f(X \cap X')$ and $f(X) \cap f(X')$ are not always equal.]
- 3. Let A be a set and $E \subset A$. Define the function $\chi_E : A \to \{0, 1\}$ by setting $\chi_E(x) = 1$ if $x \in E$ and $\chi_E(x) = 0$ if $x \notin E$. If E and F are subsets of A show that
 - (a) $\chi_{E\cap F} = \chi_E \cdot \chi_F$
 - (b) $\chi_{E\cup F} = \chi_E + \chi_F \chi_{E\cap F}$
- 4. Show that the following is an equivalence relation on \mathbb{R}^2 : $(x_1, y_1) \sim (x_2, y_2)$ if and only if both $x_1 x_2$ and $y_1 y_2$ are integers.

2 Metric spaces

5. Show that the following gives a distance function on \mathbb{R}^n :

$$d_1(x,y) = \sum_{i=1}^n |x_i - y_i|$$

Draw the unit ball in \mathbb{R}^2 using this metric (i.e. the set of points of d_1 distance 1 from the origin (0,0)).

6. Let $C^0([a,b])$ be the set of continuous functions $f:[a,b] \to \mathbb{R}$. Show that if we define

$$d^{1}(f,g) = \int_{a}^{b} |f(t) - g(t)| dt$$

then $(C^0([a, b]), d^1)$ is a metric space.

7. Let X be a set. For any $x, y \in X$ define the function d by

$$d(x,x) = 0$$

and

$$d(x,y) = 1$$

if $x \neq y$. Prove that (X, d) is a metric space.

3 Continuity

- 8. Show that if we consider the metric space (\mathbb{R}^2, d_1) given in problem 5, then the function $F: (\mathbb{R}^2, d_1) \to (\mathbb{R}^2, d_1)$ defined by $F(x_1, x_2) = (3x_2, 2x_1)$ is continuous function at the origin (0, 0) using the ε, δ definition.
- 9. Show that $f: (X, d_X) \to (Y, d_Y)$ is a continuous function between metric spaces (using the ε, δ definition) if and only if for every open set $U \subset Y$, $f^{-1}(U)$ is open.
- 10. If X and Y are sets and d is the metric defined in problem 7, and $f: (X, d) \to (Y, d)$ is any function, show that f is continuous.