Homework 1

Math 147, Fall 2018

1 Review of sets, functions, equivalence relations

1. Let A and B be sets, both of which have at least two distinct members. Prove that there is a subset $W \subset A \times B$ which is not the Cartesian product of a subset of A with a subset of B.
2. Let $A=\left\{a_{1}, a_{2}\right\}$ and $B=\left\{b_{1}, b_{2}\right\}$ be two sets each with two elements. Let $f: A \rightarrow B$ be the constant function such that $f(a)=b_{1}$ for each $a \in A$.
(a) Prove that $f^{-1}\left(f\left(\left\{a_{1}\right\}\right)\right) \neq\left\{a_{1}\right\}$. [So $f^{-1}(f(X))$ and X are not always equal.]
(b) Prove that $f\left(f^{-1}(B)\right) \neq B$. [So $f\left(f^{-1(X)}\right)$ and X are not always equal.]
(c) Prove that $f\left(\left\{a_{1}\right\} \cap\left\{a_{2}\right\}\right) \neq f\left(\left\{a_{1}\right\}\right) \cap f\left(\left\{a_{2}\right\}\right)$. [So $f\left(X \cap X^{\prime}\right)$ and $f(X) \cap f\left(X^{\prime}\right)$ are not always equal.]
3. Let A be a set and $E \subset A$. Define the function $\chi_{E}: A \rightarrow\{0,1\}$ by setting $\chi_{E}(x)=1$ if $x \in E$ and $\chi_{E}(x)=0$ if $x \notin E$. If E and F are subsets of A show that
(a) $\chi_{E \cap F}=\chi_{E} \cdot \chi_{F}$
(b) $\chi_{E \cup F}=\chi_{E}+\chi_{F}-\chi_{E \cap F}$
4. Show that the following is an equivalence relation on $\mathbb{R}^{2}:\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right)$ if and only if both $x_{1}-x_{2}$ and $y_{1}-y_{2}$ are integers.

2 Metric spaces

5. Show that the following gives a distance function on \mathbb{R}^{n} :

$$
d_{1}(x, y)=\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|
$$

Draw the unit ball in \mathbb{R}^{2} using this metric (i.e. the set of points of d_{1} distance 1 from the origin $(0,0)$).
6. Let $C^{0}([a, b])$ be the set of continuous functions $f:[a, b] \rightarrow \mathbb{R}$. Show that if we define

$$
d^{1}(f, g)=\int_{a}^{b}|f(t)-g(t)| d t
$$

then $\left(C^{0}([a, b]), d^{1}\right)$ is a metric space.
7. Let X be a set. For any $x, y \in X$ define the function d by

$$
d(x, x)=0
$$

and

$$
d(x, y)=1
$$

if $x \neq y$. Prove that (X, d) is a metric space.

3 Continuity

8. Show that if we consider the metric space $\left(\mathbb{R}^{2}, d_{1}\right)$ given in problem 5 , then the function $F:\left(\mathbb{R}^{2}, d_{1}\right) \rightarrow\left(\mathbb{R}^{2}, d_{1}\right)$ defined by $F\left(x_{1}, x_{2}\right)=\left(3 x_{2}, 2 x_{1}\right)$ is continuous function at the origin $(0,0)$ using the ε, δ definition.
9. Show that $f:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$ is a continuous function between metric spaces (using the ε, δ definition) if and only if for every open set $U \subset Y, f^{-1}(U)$ is open.
10. If X and Y are sets and d is the metric defined in problem 7, and $f:(X, d) \rightarrow(Y, d)$ is any function, show that f is continuous.
