Homework 2

Math 147, Fall 2018

- 1. In (\mathbb{R}^2, d) where d is the standard Euclidean metric: $d(x, y) = \sqrt{\sum_i (x_i y_i)^2}$
 - (a) Prove that the unit square $[0, 1] \times [0, 1]$ is closed.
 - (b) Prove that the ball $\{(x_1, x_2) | x_1^2 + x_2^2 < 1\}$ is open.
 - (c) Prove that the subset $A = \{(x_1, x_2) \mid x_1 < 2\}$ is open.
- 2. Let X be a metric space. Prove that the union $\bigcup_{\alpha} U_{\alpha}$ of arbitrarily many open sets $\{U_{\alpha}\}$ is open (using the metric definition of open with open balls).
- 3. Prove that the intersection $\cap_{\alpha} V_{\alpha}$ of arbitrarily many closed sets $\{V_{\alpha}\}$ is closed (you may use either the limit point definition of closed or the definition that closed is the complement of open).
- 4. Let $U_n = (-1/n, 1/n)$ be the open interval between -1/n and 1/n. Verify that U_n is an open subset of \mathbb{R} with the usual metric d(x, y) = |x - y|. Determine what is the intersection $U = \bigcap_{n=1}^{\infty} U_n$ and show that U is not an open set.
- 5. Give an example of an infinite union $V = \bigcup_i V_i$ of closed sets $\{V_i\}$ such that V is not closed.
- 6. Let (X, d_1) and (Y, d_2) be metric spaces. Let $f : X \to Y$ be a *continuous* function. Define a distance function d on $X \times Y$ using the maximum:

 $d((a_X, a_Y), (b_X, b_Y)) = \max\{d_1(a_X, b_X), d_2(a_Y, b_Y)\}.$

Define the graph $\Gamma(f) \subset X \times Y$ to be the subset

$$\Gamma(f) = \{ (x, f(x)) \subset X \times Y \}.$$

Show that $\Gamma(f)$ is a closed subset of $X \times Y$.

7. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} \frac{1}{x} & \text{if } x > 0\\ 0 & \text{if } x \le 0 \end{cases}$$

Show that f is not continuous but $\Gamma(f)$ is still a closed subset of \mathbb{R}^2 .

8. Let S^1 be the unit circle given by

$$S^{1} = \{(x_{1}, x_{2}) \mid x_{1}^{2} + x_{2}^{2} = 1\}$$

Show that S^1 is a closed subset of \mathbb{R}^2 . [Suggestion: $S^1 = \{x \in \mathbb{R}^2 \mid d_{Euc}(x,0) = 1\}$, show the complement is open utilizing the triangle inequality.]

Bonus: We have a metric on S^1 coming from the metric on \mathbb{R}^2 . As in problem 6, we can define a metric on the process $S^1 \times \mathbb{R}$ using the maximum metric:

 $d(((\cos \theta_1, \sin \theta_1), t_1), ((\cos \theta_2, \sin \theta_2), t_2)) = \max\{d((\cos \theta_1, \sin \theta_1), (\cos \theta_2, \sin \theta_2)), d(t_1, t_2)\}.$

Let the function $F : \mathbb{R}^2 \setminus \{0\} \to S^1 \times \mathbb{R}$ be defined by

$$F(x_1, x_2) = \left(\left(\frac{x_1}{\sqrt{x_1^2 + x_2^2}}, \frac{x_2}{\sqrt{x_1^2 + x_2^2}} \right), \sqrt{x_1^2 + x_2^2} \right).$$

- (a) Prove that F is continuous.
- (b) Find a continuous inverse function G for F. Being an inverse means that $G \circ F$ is the identity map on $\mathbb{R}^2 \setminus \{0\}$ and $F \circ G$ is the identity map on $S^1 \times \mathbb{R}$. Prove that these compositions are the identity and that G is continuous.