Homework 2

Math 147, Fall 2018

1. In $\left(\mathbb{R}^{2}, d\right)$ where d is the standard Euclidean metric: $d(x, y)=\sqrt{\sum_{i}\left(x_{i}-y_{i}\right)^{2}}$
(a) Prove that the unit square $[0,1] \times[0,1]$ is closed.
(b) Prove that the ball $\left\{\left(x_{1}, x_{2}\right) \mid x_{1}^{2}+x_{2}^{2}<1\right\}$ is open.
(c) Prove that the subset $A=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}<2\right\}$ is open.
2. Let X be a metric space. Prove that the union $\cup_{\alpha} U_{\alpha}$ of arbitrarily many open sets $\left\{U_{\alpha}\right\}$ is open (using the metric definition of open with open balls).
3. Prove that the intersection $\cap_{\alpha} V_{\alpha}$ of arbitrarily many closed sets $\left\{V_{\alpha}\right\}$ is closed (you may use either the limit point definition of closed or the definition that closed is the complement of open).
4. Let $U_{n}=(-1 / n, 1 / n)$ be the open interval between $-1 / n$ and $1 / n$. Verify that U_{n} is an open subset of \mathbb{R} with the usual metric $d(x, y)=|x-y|$. Determine what is the intersection $U=\cap_{n=1}^{\infty} U_{n}$ and show that U is not an open set.
5. Give an example of an infinite union $V=\cup_{i} V_{i}$ of closed sets $\left\{V_{i}\right\}$ such that V is not closed.
6. Let $\left(X, d_{1}\right)$ and $\left(Y, d_{2}\right)$ be metric spaces. Let $f: X \rightarrow Y$ be a continuous function. Define a distance function d on $X \times Y$ using the maximum:

$$
d\left(\left(a_{X}, a_{Y}\right),\left(b_{X}, b_{Y}\right)\right)=\max \left\{d_{1}\left(a_{X}, b_{X}\right), d_{2}\left(a_{Y}, b_{Y}\right)\right\}
$$

Define the graph $\Gamma(f) \subset X \times Y$ to be the subset

$$
\Gamma(f)=\{(x, f(x)) \subset X \times Y\}
$$

Show that $\Gamma(f)$ is a closed subset of $X \times Y$.
7. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}\frac{1}{x} & \text { if } x>0 \\ 0 & \text { if } x \leq 0\end{cases}
$$

Show that f is not continuous but $\Gamma(f)$ is still a closed subset of \mathbb{R}^{2}.
8. Let S^{1} be the unit circle given by

$$
S^{1}=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}^{2}+x_{2}^{2}=1\right\}
$$

Show that S^{1} is a closed subset of \mathbb{R}^{2}. [Suggestion: $S^{1}=\left\{x \in \mathbb{R}^{2} \mid d_{\text {Euc }}(x, 0)=1\right\}$, show the complement is open utilizing the triangle inequality.]

Bonus: We have a metric on S^{1} coming from the metric on \mathbb{R}^{2}. As in problem 6 , we can define a metric on the procut $S^{1} \times \mathbb{R}$ using the maximum metric:
$d\left(\left(\left(\cos \theta_{1}, \sin \theta_{1}\right), t_{1}\right),\left(\left(\cos \theta_{2}, \sin \theta_{2}\right), t_{2}\right)\right)=\max \left\{d\left(\left(\cos \theta_{1}, \sin \theta_{1}\right),\left(\cos \theta_{2}, \sin \theta_{2}\right)\right), d\left(t_{1}, t_{2}\right)\right\}$.
Let the function $F: \mathbb{R}^{2} \backslash\{0\} \rightarrow S^{1} \times \mathbb{R}$ be defined by

$$
F\left(x_{1}, x_{2}\right)=\left(\left(\frac{x_{1}}{\sqrt{x_{1}^{2}+x_{2}^{2}}}, \frac{x_{2}}{\sqrt{x_{1}^{2}+x_{2}^{2}}}\right), \sqrt{x_{1}^{2}+x_{2}^{2}}\right) .
$$

(a) Prove that F is continuous.
(b) Find a continuous inverse function G for F. Being an inverse means that $G \circ F$ is the identity map on $\mathbb{R}^{2} \backslash\{0\}$ and $F \circ G$ is the identity map on $S^{1} \times \mathbb{R}$. Prove that these compositions are the identity and that G is continuous.

