Homework 3

Math 147, Fall 2018

1 Topological spaces and continuity (3.2,3.5)

- 1. Suppose X is a topological space. Let A be a subset of X. Suppose that for each $x \in A$ there is an open set U containing x such that $U \subset A$. Show that A is open in X (i.e. A is in the topology).
- 2. Let $X = \{a, b, c, d\}$ be a set with four elements.
 - (a) Show that if we designate the following subsets as the open sets in X, this gives a topology:

$$\emptyset, \{a, b\}, \{c, d\}, \{a, b, c, d\}$$

- (b) Give $Y = \{0, 1\}$ the discrete topology (every subset is an open set). Show that if $f: X \to Y$ is a continuous function then f(a) = f(b) and f(c) = f(d).
- 3. Let X and Y be topological spaces, and let $f : X \to Y$ be a continuous function (defined by the fact that the preimage of open sets are open). Show that if $C \subset Y$ is a closed subset then $f^{-1}(C)$ is closed.

2 Basis for a topology and continuity (Munkres $\S12,13$)

- 4. Verify that the open balls $\{B_{\varepsilon}(p)\}$ varying over all $\varepsilon \in \mathbb{R}_{>0}$ and $p \in \mathbb{R}^2$ form a basis for the Euclidean topology on \mathbb{R}^2 .
- 5. Let X be a set. Give X the *discrete topology* where the collection of open sets \mathcal{T}_d is every subset of X.
 - (a) Show that $\mathcal{B}_d = \{\{x\} \mid x \in X\}$, the set of subsets containing a single element of X, forms a basis for the discrete topology.
 - (b) Show that every subset $A \subset X$ is both open and closed in the discrete topology.
 - (c) Let Y be another topological space and let $f: X \to Y$ be a function. Show that f is continuous.

- 6. Consider a topology \mathcal{T}_{ℓ} on the real line \mathbb{R} generated by the basis $\mathcal{B}_{\ell} = \{[a, b) \mid a < b\}$.
 - (a) (Update!) Show there exists a closed set C (with respect to this topology) which is bounded from below (i.e. there exists N such that $x \ge N$ for all $x \in C$).
 - (b) Let \mathcal{T} denote the usual topology on \mathbb{R} with basis given by open intervals $\{(a, b) \mid a < b\}$, and consider a function

$$f: (\mathbb{R}, \mathcal{T}_{\ell}) \to (\mathbb{R}, \mathcal{T}).$$

Show that if f has right limits equal to the value of the function:

$$\lim_{x \to a^+} f(x) = f(a)$$

then f is continuous as a function from $(\mathbb{R}, \mathcal{T}_{\ell})$ to $(\mathbb{R}, \mathcal{T})$.

(c) Consider a different basis where the endpoints of the interval must be rational numbers:

$$\mathcal{B}_{\ell}^{\mathbb{Q}} = \{ [a, b) \mid a < b \text{ and } a, b \in \mathbb{Q} \}.$$

Show that the topology $\mathcal{T}_{\ell}^{\mathbb{Q}}$ generated by this basis is different from the topology \mathcal{T}_{ℓ} by showing that there is at least one open set in one of the topologies that is not an open set in the other topology.

3 Interior, closure, boundary (3.4)

7. In \mathbb{R}^n with the Euclidean topology, let

$$B = \{(x_1, \cdots, x_n) \mid x_1^2 + \cdots + x_n^2 \le 1\}$$

Prove that $(x_1, \dots, x_n) \in Bdry(B)$ if and only if $x_1^2 + \dots + x_n^2 = 1$, i.e. the boundary of B is the (n-1) dimensional sphere

$$S^{n-1} = \{ (x_1, \cdots, x_n) \mid x_1^2 + \cdots + x_n^2 \}$$

8. In \mathbb{R}^{n+1} with the Euclidean topology, let

$$P = \{ (x_1, \cdots, x_n, x_{n+1}) \mid x_{n+1} = 0 \}.$$

Prove that $Int(P) = \emptyset$, Bdry(P) = P, and $\overline{P} = P$.