Homework 4

Math 147, Fall 2018

1 Basis for a topology

- 1. Let \mathbb{Z} denote the integers and let \mathcal{B} be the collection of subsets of \mathbb{Z} of the form $U = \{an + b \mid n \in \mathbb{Z}\}_{a,b \in \mathbb{Z}, a \geq 2, 0 \leq b < a}$.
 - (a) Show that \mathcal{B} is a basis for a topology on \mathbb{Z} . Let $\tau_{\mathcal{B}}$ denote the topology generated by \mathcal{B} .
 - (b) Show that each basis element $U_{a,b} = \{an + b \mid n \in \mathbb{Z}\}$ (where $a, b \in \mathbb{Z}$ satisfy $a \ge 2, 0 \le b < a$) is both an open set and a closed set in the topology $\tau_{\mathcal{B}}$.
 - (c) Consider the basis elements $U_{p,0} = \{pn \mid n \in \mathbb{Z}\}$ where p is a prime number, and let

$$A = \bigcup_{p \text{ prime}} U_{p,0}.$$

Show that $\mathbb{Z} \setminus A = \{-1, 1\}$ and use this to prove that A is not closed. Conclude that A is not a finite union of the closed sets $U_{p,0}$, so there must be infinitely many prime numbers.

2 Closure and boundary (3.4)

- 2. Let $A \subset X$ be a subset of a topological space. Show that $Bdry(A) = \emptyset$ if and only if A is both open and closed in X.
- 3. A subset $A \subset X$ is said to be *dense* in X if $\overline{A} = X$. Prove that if for every open set $U \subset X$, we have $U \cap A \neq \emptyset$, then A is dense in X.

3 Homeomorphisms (3.5)

4. Suppose $f: X \to Y$ is a homeomorphism of topological spaces. Suppose $h: Y \to Z$ is a function between topological spaces. Show that h is continuous if and only if the composition $h \circ f: X \to Z$ is continuous.

- 5. Determine which of the following functions are homeomorphisms (using the standard topology on \mathbb{R}). If it is a homeomorphism, prove it. If it is not a homeomorphism, explain why.
 - (a) $f_1 : \mathbb{R} \to \mathbb{R}, f_1(x) = 2x + 3$
 - (b) $f_2 : \mathbb{R} \to \mathbb{R}, f_2(x) = x^2$
 - (c) $f_3: (0,\infty) \to \mathbb{R}, f_3(x) = \ln(x)$
 - (d) $f_4: (0,\infty) \to \mathbb{R}, f_4(x) = \sqrt{x}$
- 6. Prove that an open interval (a, b) considered as a subspace of the real line \mathbb{R} is homeomorphic to the real line \mathbb{R} .