Homework 5

Math 147, Fall 2018

1. Consider the subset Y = [-1, 1] of the real line \mathbb{R} . Using the usual topology on \mathbb{R} , give Y the subspace topology. Which of the following subsets are open sets in Y with the subspace topology? Which are open sets in \mathbb{R} ?

$$A = \{x \mid \frac{1}{2} < |x| < 1\}$$
$$B = \{x \mid \frac{1}{2} < |x| \le 1\}$$
$$C = \{x \mid \frac{1}{2} \le |x| < 1\}$$
$$D = \{x \mid \frac{1}{2} \le |x| \le 1\}$$
$$E = \{x \mid 0 < |x| < 1 \text{ and } 1/x \notin \mathbb{Z}_+\}$$

- 2. Let Y be a subspace of X and let A be a subset of Y. Let \overline{A}^X denote the closure of A in X and let \overline{A}^Y denote the closure of A in Y. Prove that $\overline{A}^Y \subset \overline{A}^X$. Give an example where $\overline{A}^Y \neq \overline{A}^X$.
- 3. Let $X = \prod_{\alpha \in I} X_{\alpha}$ be a topological product of the family of spaces $\{X_{\alpha}\}_{\alpha \in I}$. Let $p_{\alpha} : X \to X_{\alpha}$ denote the projection map. Prove that a function $f : Y \to X$ from a space Y to X is continuous if and only if for each $\alpha \in I$, $p_{\alpha} \circ f : Y \to X_{\alpha}$ is continuous.
- 4. Consider the product $\prod_{i=1}^{\infty} \mathbb{R}_i$ where $\mathbb{R}_i = \mathbb{R}$ of infinitely many copies of \mathbb{R} . Its open sets using the *product topology* have the form $U_1 \times \cdots \times U_n \times \mathbb{R} \times \mathbb{R} \times \cdots$ for open sets $U_i \subset \mathbb{R}$. Consider the subset $C \subset \mathbb{R}^{\infty}$ consisting of sequences (c_1, c_2, \cdots) such that $c_i \neq 0$ for only finitely many values of i.
 - (a) What is the closure of C, \overline{C} in \mathbb{R}^{∞} with the product topology?
 - (b) Another topology on a product such as \mathbb{R}^{∞} is called the *box topology*. The open sets are generated by the basis of sets of the form $\prod_{i=1}^{\infty} U_i$ where $U_i \subset \mathbb{R}$ is open for every $i = 1, 2, \cdots$. What is the closure of C in \mathbb{R}^{∞} with the box topology?