Homework 7

Math 147, Fall 2018

1. Suppose $\left(X, \tau_{X}\right)$ and $\left(Y, \tau_{Y}\right)$ are topological spaces. Let $\left(X \times Y, \tau_{X \times Y}\right)$ be the product of X with Y with the product topology. Define an equivalence relation as follows: if $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y$ then $\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right)$ if and only if $y_{1}=y_{2}$. Let $(X \times Y) / \sim$ be the quotient of $X \times Y$ by this equivalence relation, and put the quotient topology on this space. Show that with the quotient topology, $(X \times Y) / \sim$ is homeomorphic to $\left(X, \tau_{X}\right)$ by defining a map $f:(X \times Y) / \sim \rightarrow Y$, which is continuous and has continuous inverse.
2. Suppose $\left(X, \tau_{X}\right)$ and $\left(Y, \tau_{Y}\right)$ are topological spaces and suppose $f:\left(X, \tau_{X}\right) \rightarrow\left(Y, \tau_{Y}\right)$ is a continuous surjective map. Consider the equivalence relation on X defined by $x_{1} \sim x_{2}$ if and only if $f\left(x_{1}\right)=f\left(x_{2}\right)$. Let $\left(X / \sim, \tau_{q}\right)$ be the quotient space of X by this equivalence relation with the quotient topology.
Define a map $\tilde{f}:\left(X / \sim, \tau_{q}\right) \rightarrow\left(Y, \tau_{Y}\right)$ by setting $\tilde{f}([x])=f(x)$ where $[x]$ denotes the equivalence class containing the point x.
(a) Show that \tilde{f} is well defined (show that if $x_{1} \sim x_{2}$ then $\left.\tilde{f}\left(\left[x_{1}\right]\right)=\tilde{f}\left(\left[x_{2}\right]\right)\right)$.
(b) Show that \tilde{f} is continuous.
(c) Show that \tilde{f} has an inverse \tilde{f}^{-1} such that $\tilde{f} \circ \tilde{f}^{-1}(y)=y$ and $\tilde{f}^{-1}(\tilde{f}([x]))=[x]$.
(d) Show that there is an example where \tilde{f}^{-1} is not continuous. (Hint: show that if $X=\mathbb{R}^{2}$ and τ_{X} is the discrete topology and $Y=\mathbb{R}$ with τ_{Y} being the Euclidean topology and we define f by $f\left(\left(x_{1}, x_{2}\right)\right)=x_{1}$ then $\tilde{f}^{-1}:\left(\mathbb{R}, \tau_{E u c}\right) \rightarrow\left(X / \sim, \tau_{q}\right)$ is not continuous)
3. Prove that if $x \in \mathbb{R}$ then $\mathbb{R} \backslash\{x\}$ is not connected.
4. Let A and B be subsets of a topological space (X, τ) such that $\left(A, \tau_{A}\right)$ and $\left(B, \tau_{B}\right)$ are connected with the subspace topology. If $A \cap B \neq \emptyset$ show that $A \cup B$ with the subspace topology is connected.
5. Prove that if (X, τ) has n connected components C_{1}, \cdots, C_{n} and $X=C_{1} \cup \cdots \cup C_{n}$ then there is a surjective continuous map $f:(X, \tau) \rightarrow\{1,2, \cdots, n\}$ where $\{1,2, \cdots, n\}$ has the discrete topology. Conversely if there is a surjective continuous map $f:(X, \tau) \rightarrow$ $\{1,2, \cdots, n\}$ (again using the discrete topology on $\{1,2, \cdots, n\}$) prove that (X, τ) has at least n disjoint open and closed subsets.
