HOMEWORK 1

MATH 180, WINTER 2023

The goal of this assignment is to review some background we will need to define and work with manifolds.

1. Open subsets of \mathbb{R}^{n}

First, we need to recall the definitions of open balls and open sets in \mathbb{R}^{n}.
Definition 1. The ball of radius ε in \mathbb{R}^{n} centered at $\mathbf{a}=\left(a_{1}, \cdots, a_{n}\right) \in \mathbb{R}^{n}$, denoted $B_{\varepsilon}(\mathbf{a})$ is the set of points in \mathbb{R}^{n} of distance less than ε from \mathbf{a} :

$$
B_{\varepsilon}(\mathbf{a})=\left\{\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n} \mid\left(x_{1}-a_{1}\right)^{2}+\cdots+\left(x_{n}-a_{n}\right)^{2}<\varepsilon^{2}\right\} .
$$

In Euclidean space, open sets are defined using ε-balls.
Definition 2. A subset $U \subseteq \mathbb{R}^{n}$ is open if for every point $\mathbf{x} \in U$, there exists a $\varepsilon>0$ (which usually will depend on $\mathbf{x})$ such that $B_{\varepsilon}(\mathbf{x}) \subset U$.
(1) Prove that the subset $U \subset \mathbb{R}^{3}$ defined by

$$
U=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{3}<1\right\}
$$

is open.
(2) Prove that if $U_{1}, U_{2} \subset \mathbb{R}^{n}$ are two open sets, then their union $U_{1} \cup U_{2}$ is open. In general, prove that if $\left\{U_{\alpha}\right\}_{\alpha \in \mathcal{I}}$ is any collection (potentially infinite) of open sets, then the union $\cup_{\alpha \in \mathcal{I}} U_{\alpha}$ is open.
(3) Prove that the ball $B_{\varepsilon}(\mathbf{a})$ is an open subset of \mathbb{R}^{n}.
(4) Prove that any open subset of \mathbb{R}^{n} is a (possibly infinite) union of balls.

2. The subspace topology

We will usually think of manifolds as subsets of \mathbb{R}^{n}. For example, we can describe the 2 -sphere S^{2} as the subset of \mathbb{R}^{3} given by

$$
S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}
$$

If we want to focus on S^{2} as the space we are interested in instead of \mathbb{R}^{3}, we will need to define what it means to be an open subset of S^{2}. Specifying the topology on S^{2} just means specifying what the open subsets of S^{2} are. Here we will use the subspace topology.

Definition 3. Suppose $A \subseteq \mathbb{R}^{n}$ is a subset (for example $A=S^{2} \subset \mathbb{R}^{3}$). The subspace topology on A is defined by saying a subset $U \subseteq A$ is open if and only if there exists a subset $U^{\prime} \subseteq \mathbb{R}^{n}$ such that U^{\prime} is open in \mathbb{R}^{n} in the usual sense and $U=U^{\prime} \cap A$.
(5) Apply this definition to prove that the following are open subsets of S^{2} as a subspace of \mathbb{R}^{3} :
(a) The upper hemisphere $H=\left\{(x, y, z) \in S^{2} \mid z>0\right\}$
(b) The complement of the north pole $F=S^{2} \backslash N=S^{2} \backslash\{(0,0,1)\}$
(c) The complement of the north and south poles $A=S^{2} \backslash\{(0,0,1),(0,0,-1)\}$
(6) Consider $S^{2} \subset \mathbb{R}^{3}$ with the subspace topology. Show that $U \subset S^{2}$ is an open subset using the subspace topology if and only if for every point $\mathbf{x} \in U$, there exists $\varepsilon>0$ such that $B_{\varepsilon}(\mathbf{x}) \cap S^{2} \subset U$.

3. Continuity

There are many equivalent definitions for continuity of a function, some coming from calculus and others coming from topology. We will start with the usual $\varepsilon-\delta$ definition of continuity for functions between Euclidean spaces.
Definition 4. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuous if for every $\mathbf{a} \in \mathbb{R}^{n}$ and every $\varepsilon>0$, there exists $\delta>0$ such that $f\left(B_{\delta}(\mathbf{a})\right) \subset B_{\varepsilon}(f(\mathbf{a}))$.
(7) Using the $\varepsilon-\delta$ definition of continuity, prove that the projection $\pi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by $\pi\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, x_{2}\right)$ is continuous.
(8) Using the $\varepsilon-\delta$ definition of continuity, prove that the translation map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+2, x_{2}-1, x_{3}+5\right)$ is continuous.

