HOMEWORK 2

MATH 180, WINTER 2023

1. Continuity in topology

Recall that the usual ε - δ definition of continuity for functions between Euclidean spaces is as follows.

Definition 1. A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is *continuous* if for every $\mathbf{a} \in \mathbb{R}^n$ and every $\varepsilon > 0$, there exists $\delta > 0$ such that $f(B_{\delta}(\mathbf{a})) \subset B_{\varepsilon}(f(\mathbf{a}))$.

In topology, we say that a function $f: X \to Y$ is continuous iff whenever $V \subseteq Y$ is an open subset of Y, its preimage $f^{-1}(V) \subset X$ is an open subset. In the next two problems, you'll show that this definition is equivalent to the ε - δ definition.

- (1) Suppose you have a function $f : \mathbb{R}^n \to \mathbb{R}^m$ where you know that for any open subset $V \subseteq \mathbb{R}^m$, the preimage $f^{-1}(V)$ is an open set. Show that f is continuous in the ε - δ sense.
- (2) Prove that if $f : \mathbb{R}^n \to \mathbb{R}^m$ is continuous (in the ε - δ sense), and $V \subseteq \mathbb{R}^m$ is an open set, then the preimage $f^{-1}(V)$ is an open subset of \mathbb{R}^n . (Start with what it means that V is open, and see what you can get from knowing that f is ε - δ continuous.)

2. Stereographic projection

Definition 2. The 2-sphere S^2 is the subset of \mathbb{R}^3 of points which have distance 1 from the origin:

$$S^{2} = \{ (x_{1}, x_{2}, x_{3}) \in \mathbb{R}^{3} \mid x_{1}^{2} + x_{2}^{2} + x_{3}^{2} = 1 \}.$$

Definition 3. Stereographic projection from the north pole N = (0, 0, 1), is a function $f: S^2 \setminus N \to \mathbb{R}^2$ defined as follows.

For any point $\mathbf{x} \in S^2 \setminus N$, let ℓ be the unique straight line through (0, 0, 1) and \mathbf{x} . Since $\mathbf{x} \neq N$, ℓ intersects the (x_1, x_2) -plane $P = \{x_3 = 0\}$. Then $f(\mathbf{x}) \in \mathbb{R}^2$ is defined to be the point whose coordinates (x_1, x_2) which agree with the (x_1, x_2) coordinates of the intersection point of ℓ with the plane P.

- (3) Consider the point $\mathbf{x} = \left(\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}\right)$. Show that \mathbf{x} is a point in S^2 . Calculate the linear parametric equation (x(t) = At + B, y(t) = Ct + D, z(t) = Et + F) for the line ℓ that passes through \mathbf{x} and N. Calculate where ℓ intersects the plane P, and write down $f(\mathbf{x})$.
- (4) For a general point $\mathbf{x} = (x_0, y_0, z_0) \in S^2 \setminus N$, calculate the linear parametric equation for the line ℓ that passes through \mathbf{x} and N (in terms of the constants x_0, y_0 , and z_0). Then calculate where ℓ intersects the plane P, to determine $f(\mathbf{x})$ in terms of x_0, y_0, z_0 . This gives a general formula for the function f.

(5) Looking at your function from problem 4, what is the set of points $(x_0, y_0, z_0) \in \mathbb{R}^3$ where this function is defined? Show this function is continuous where it is defined.

3. Inverses and transition functions

You have the definition of $f: S^2 \setminus N \to \mathbb{R}^2$ and your formula from problem 4.

- (6) Find a formula for the inverse of $f, g: \mathbb{R}^2 \to S^2 \setminus N$: For $(X, Y) \in \mathbb{R}^2$ find the coordinates of $g(X, Y) \in S^2 \setminus N$. Verify that $f \circ g(X, Y) = (X, Y)$ and $g \circ f(x_0, y_0, z_0) = (x_0, y_0, z_0)$.
- (7) Prove that for your inverse function $g : \mathbb{R}^2 \to S^2 \setminus N$, if $U = B_{\varepsilon}(\mathbf{a}) \cap S^2 \setminus N$ then $g^{-1}(U)$ is an open subset of \mathbb{R}^2 .
- (8) Using the previous problem and the fact that any open subset of \mathbb{R}^3 is a union of balls, together with the subspace topology definition of open subsets of $S^2 \setminus N$, show that for any open subset V of $S^2 \setminus N$, $g^{-1}(V)$ is an open subset of \mathbb{R}^2 . Conclude that g is continuous.

Just as you defined the stereographic projection from the north pole N = (0, 0, 1), we can also define a stereographic projection from the south pole S = (0, 0, -1).

Definition 4. Stereographic projection from the south pole S = (0, 0, -1), is a function $h: S^2 \setminus S \to \mathbb{R}^2$ defined as follows.

For any point $\mathbf{x} \in S^2 \setminus S$, let ℓ be the unique straight line through (0, 0, -1) and \mathbf{x} . Since $\mathbf{x} \neq S$, ℓ intersects the (x_1, x_2) -plane $P = \{x_3 = 0\}$. Then $h(\mathbf{x}) \in \mathbb{R}^2$ is defined to be the point whose coordinates (x_1, x_2) which agree with the (x_1, x_2) coordinates of the intersection point of ℓ with the plane P.

- (9) Find a formula as you did in problem 4 for stereographic projection to the south pole: what is $h(x_0, y_0, z_0)$?
- (10) Find an inverse function $i : \mathbb{R}^2 \to S^2 \setminus S$ for h. Now we will put both stereographic projections (from the north and south poles) together.
- (11) First determine what is f((0,0,-1))? (Equivalently what is $g^{-1}((0,0,-1))$?) We will call this point X = f((0,0,-1)).

Then we have a continuous map

$$g: \mathbb{R}^2 \setminus \{X\} \to S^2 \setminus \{S, N\}$$

and another continuous map obtained by restricting h

$$h': S^2 \setminus \{S, N\} \to \mathbb{R}^2$$

which we can compose.

- (12) What is the image of $h' \circ g$?
- (13) What is $h' \circ g((2,0))$? What is $h' \circ g((0,1/3))$? Where does $h' \circ g$ send the circle of radius r centered at (0,0)?
- (14) What is the inverse of $h' \circ g$?

HOMEWORK 2

We now have a new way to understand S^2 abstractly without thinking of it inside \mathbb{R}^3 as follows: S^2 can be built from two pieces: $S^2 \setminus N$ and $S^2 \setminus S$. Each of these pieces is homeomorphic to \mathbb{R}^2 . Therefore, we can think of S^2 as being built from two copies of \mathbb{R}^2 . We glue these two pieces of \mathbb{R}^2 in the following way:

For every point $\mathbf{a} \in \mathbb{R}^2 \setminus \{X\}$ in the first copy of \mathbb{R}^2 , we identify this point with $h' \circ g(\mathbf{a})$ in the second copy of \mathbb{R}^2 .

$$S^2 = \mathbb{R}^2_1 \sqcup \mathbb{R}^2_2 / \sim$$

 $\mathcal{S} = \mathbb{K}_1 \sqcup \mathbb{K}_{2/} \sim$ where the equivalence relation is defined that for any $\mathbf{a} \in \mathbb{R}_1^2 \setminus X_1 \ \mathbf{a} \sim h' \circ g(\mathbf{a}) \in \mathbb{R}_2^2$.

