HOMEWORK 2

MATH 180, WINTER 2023

1. Continuity in topology

Recall that the usual $\varepsilon-\delta$ definition of continuity for functions between Euclidean spaces is as follows.

Definition 1. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuous if for every $\mathbf{a} \in \mathbb{R}^{n}$ and every $\varepsilon>0$, there exists $\delta>0$ such that $f\left(B_{\delta}(\mathbf{a})\right) \subset B_{\varepsilon}(f(\mathbf{a}))$.

In topology, we say that a function $f: X \rightarrow Y$ is continuous iff whenever $V \subseteq Y$ is an open subset of Y, its preimage $f^{-1}(V) \subset X$ is an open subset. In the next two problems, you'll show that this definition is equivalent to the $\varepsilon-\delta$ definition.
(1) Suppose you have a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ where you know that for any open subset $V \subseteq \mathbb{R}^{m}$, the preimage $f^{-1}(V)$ is an open set. Show that f is continuous in the $\varepsilon-\delta$ sense.
(2) Prove that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuous (in the $\varepsilon-\delta$ sense), and $V \subseteq \mathbb{R}^{m}$ is an open set, then the preimage $f^{-1}(V)$ is an open subset of \mathbb{R}^{n}. (Start with what it means that V is open, and see what you can get from knowing that f is $\varepsilon-\delta$ continuous.)

2. Stereographic projection

Definition 2. The 2 -sphere S^{2} is the subset of \mathbb{R}^{3} of points which have distance 1 from the origin:

$$
S^{2}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}
$$

Definition 3. Stereographic projection from the north pole $N=(0,0,1)$, is a function $f: S^{2} \backslash N \rightarrow \mathbb{R}^{2}$ defined as follows.

For any point $\mathbf{x} \in S^{2} \backslash N$, let ℓ be the unique straight line through $(0,0,1)$ and \mathbf{x}. Since $\mathbf{x} \neq N, \ell$ intersects the $\left(x_{1}, x_{2}\right)$-plane $P=\left\{x_{3}=0\right\}$. Then $f(\mathbf{x}) \in \mathbb{R}^{2}$ is defined to be the point whose coordinates $\left(x_{1}, x_{2}\right)$ which agree with the (x_{1}, x_{2}) coordinates of the intersection point of ℓ with the plane P.
(3) Consider the point $\mathbf{x}=\left(\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}\right)$. Show that \mathbf{x} is a point in S^{2}. Calculate the linear parametric equation $(x(t)=A t+B, y(t)=C t+D, z(t)=E t+F)$ for the line ℓ that passes through \mathbf{x} and N. Calculate where ℓ intersects the plane P, and write down $f(\mathbf{x})$.
(4) For a general point $\mathbf{x}=\left(x_{0}, y_{0}, z_{0}\right) \in S^{2} \backslash N$, calculate the linear parametric equation for the line ℓ that passes through \mathbf{x} and N (in terms of the constants x_{0}, y_{0}, and z_{0}). Then calculate where ℓ intersects the plane P, to determine $f(\mathbf{x})$ in terms of x_{0}, y_{0}, z_{0}. This gives a general formula for the function f.
(5) Looking at your function from problem 4 , what is the set of points $\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{R}^{3}$ where this function is defined? Show this function is continuous where it is defined.

3. Inverses and transition functions

You have the definition of $f: S^{2} \backslash N \rightarrow \mathbb{R}^{2}$ and your formula from problem 4.
(6) Find a formula for the inverse of $f, g: \mathbb{R}^{2} \rightarrow S^{2} \backslash N$: For $(X, Y) \in \mathbb{R}^{2}$ find the coordinates of $g(X, Y) \in S^{2} \backslash N$. Verify that $f \circ g(X, Y)=(X, Y)$ and $g \circ f\left(x_{0}, y_{0}, z_{0}\right)=$ $\left(x_{0}, y_{0}, z_{0}\right)$.
(7) Prove that for your inverse function $g: \mathbb{R}^{2} \rightarrow S^{2} \backslash N$, if $U=B_{\varepsilon}(\mathbf{a}) \cap S^{2} \backslash N$ then $g^{-1}(U)$ is an open subset of \mathbb{R}^{2}.
(8) Using the previous problem and the fact that any open subset of \mathbb{R}^{3} is a union of balls, together with the subspace topology definition of open subsets of $S^{2} \backslash N$, show that for any open subset V of $S^{2} \backslash N, g^{-1}(V)$ is an open subset of \mathbb{R}^{2}. Conclude that g is continuous.

Just as you defined the stereographic projection from the north pole $N=(0,0,1)$, we can also define a stereographic projection from the south pole $S=(0,0,-1)$.

Definition 4. Stereographic projection from the south pole $S=(0,0,-1)$, is a function $h: S^{2} \backslash S \rightarrow \mathbb{R}^{2}$ defined as follows.

For any point $\mathbf{x} \in S^{2} \backslash S$, let ℓ be the unique straight line through $(0,0,-1)$ and \mathbf{x}. Since $\mathbf{x} \neq S, \ell$ intersects the $\left(x_{1}, x_{2}\right)$-plane $P=\left\{x_{3}=0\right\}$. Then $h(\mathbf{x}) \in \mathbb{R}^{2}$ is defined to be the point whose coordinates $\left(x_{1}, x_{2}\right)$ which agree with the (x_{1}, x_{2}) coordinates of the intersection point of ℓ with the plane P.
(9) Find a formula as you did in problem 4 for stereographic projection to the south pole: what is $h\left(x_{0}, y_{0}, z_{0}\right)$?
(10) Find an inverse function $i: \mathbb{R}^{2} \rightarrow S^{2} \backslash S$ for h.

Now we will put both stereographic projections (from the north and south poles) together.
(11) First determine what is $f((0,0,-1))$? (Equivalently what is $g^{-1}((0,0,-1))$?) We will call this point $X=f((0,0,-1))$.

Then we have a continuous map

$$
g: \mathbb{R}^{2} \backslash\{X\} \rightarrow S^{2} \backslash\{S, N\}
$$

and another continuous map obtained by restricting h

$$
h^{\prime}: S^{2} \backslash\{S, N\} \rightarrow \mathbb{R}^{2}
$$

which we can compose.
(12) What is the image of $h^{\prime} \circ g$?
(13) What is $h^{\prime} \circ g((2,0))$? What is $h^{\prime} \circ g((0,1 / 3))$? Where does $h^{\prime} \circ g$ send the circle of radius r centered at $(0,0)$?
(14) What is the inverse of $h^{\prime} \circ g$?

We now have a new way to understand S^{2} abstractly without thinking of it inside \mathbb{R}^{3} as follows: S^{2} can be built from two pieces: $S^{2} \backslash N$ and $S^{2} \backslash S$. Each of these pieces is homeomorphic to \mathbb{R}^{2}. Therefore, we can think of S^{2} as being built from two copies of \mathbb{R}^{2}. We glue these two pieces of \mathbb{R}^{2} in the following way:

For every point $\mathbf{a} \in \mathbb{R}^{2} \backslash\{X\}$ in the first copy of \mathbb{R}^{2}, we identify this point with $h^{\prime} \circ g(\mathbf{a})$ in the second copy of \mathbb{R}^{2}.

$$
S^{2}=\mathbb{R}_{1}^{2} \sqcup \mathbb{R}_{2}^{2} / \sim
$$

where the equivalence relation is defined that for any $\mathbf{a} \in \mathbb{R}_{1}^{2} \backslash X_{1} \mathbf{a} \sim h^{\prime} \circ g(\mathbf{a}) \in \mathbb{R}_{2}^{2}$.

