HOMEWORK 3

MATH 180, WINTER 2023

1. Manifolds with boundary

- (1) Prove that the closed interval [0, 1] is a 1-dimensional manifold with boundary.
- (2) Closed disk
 - (a) Show that the hemisphere $H = \{(x, y, z) \mid x^2 + y^2 + z^2 = 1, z \ge 0\}$ is a 2dimensional manifold with boundary.
 - (b) Show that the hemisphere H is homeomorphic to the closed disk $D = \{(x, y) \in$ $\mathbb{R}^2 \mid x^2 + y^2 \le 1\}.$
 - (c) Use the maps from the previous two parts to prove that the closed disk D = $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$ is a manifold with boundary.
- (3) Suppose X is an n-dimensional manifold with boundary. Let ∂X denote the set of points in the boundary of X. Show that ∂X is an (n-1)-dimensional manifold.

2. Quotient topology

If we have a space X with an equivalence relation \sim , there is a quotient map $q: X \to X/\sim$ where X/\sim is the set of equivalence classes of points in X (if two points are equivalent by the ~ relation we glue them together and consider them the same point). We can turn X/\sim from a set into a space by defining its open sets using the *quotient topology*.

Definition 1. A subset U of X/\sim is open in the quotient topology if and only if $q^{-1}(U) \subset X$ is open in X.

(The notion of open subsets on X induces a notion of open subsets on X/\sim .)

- (4) Let [0,1] be the closed unit interval. Define an equivalence relation by setting $0 \sim 1$ and all other points are only equivalent to themself. Prove that the quotient space $X = [0,1]/\sim$ is homeomorphic to the circle $S^1 = \{(x,y) \mid x^2 + y^2 = 1\}$. (Hint: try sending $t \in [0, 1]$ to $(\cos(2\pi t), \sin(2\pi t))$.)
- (5) Let $D = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$ be the closed 2-dimensional disk. Consider two disjoint copies of D, D_1 and D_2 . Each D_i comes with a notion of open subsets from viewing D as a subspace of \mathbb{R}^2 . We will say a subset U of the disjoint union $D_1 \sqcup D_2$ is open if it is the union of an open subset (possibly empty) of D_1 with an open subset (possibly empty) of D_2 . Next, we define an equivalence relation \sim on the space $D_1 \sqcup D_2$ as follows: $(x_a, y_a) \sim (x_b, y_b)$ if and only if one of the following holds
 - $(x_a, y_a) = (x_b, y_b)$ (in particular they are in the same copy of D)

• $(x_a, y_a) \in D_1, (x_b, y_b) \in D_2, x_a = x_b, y_a = y_b, \text{ and } x_a^2 + y_a^2 = 1$ • $(x_a, y_a) \in D_2, (x_b, y_b) \in D_1, x_a = x_b, y_a = y_b, \text{ and } x_a^2 + y_a^2 = 1$ Prove that the quotient space $X = D_1 \sqcup D_2 / \sim$ is homeomorphic to the 2-sphere.

3. The torus

One embedding of the torus T^2 into \mathbb{R}^3 is parameterized as follows:

 $T^2 = \{((2 + \cos \phi) \cos \theta, (2 + \cos \phi) \sin \theta, \sin \phi) \in \mathbb{R}^3 \mid \phi, \theta \in \mathbb{R}\}$ where ϕ and θ parametrize angular coordinates as shown.

(6) Prove that T^2 is a manifold by defining coordinate charts that cover T^2 . (Make sure your coordinate domains are open and your coordinate maps are homeomorphisms.)