HOMEWORK 3

MATH 180, WINTER 2023

1. Manifolds with boundary

(1) Prove that the closed interval $[0,1]$ is a 1 -dimensional manifold with boundary.
(2) Closed disk
(a) Show that the hemisphere $H=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=1, z \geq 0\right\}$ is a 2 dimensional manifold with boundary.
(b) Show that the hemisphere H is homeomorphic to the closed disk $D=\{(x, y) \in$ $\left.\mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\}$
(c) Use the maps from the previous two parts to prove that the closed disk $D=$ $\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\}$ is a manifold with boundary.
(3) Suppose X is an n-dimensional manifold with boundary. Let ∂X denote the set of points in the boundary of X. Show that ∂X is an $(n-1)$-dimensional manifold.

2. Quotient topology

If we have a space X with an equivalence relation \sim, there is a quotient map $q: X \rightarrow X / \sim$ where X / \sim is the set of equivalence classes of points in X (if two points are equivalent by the \sim relation we glue them together and consider them the same point). We can turn X / \sim from a set into a space by defining its open sets using the quotient topology.

Definition 1. A subset U of X / \sim is open in the quotient topology if and only if $q^{-1}(U) \subset X$ is open in X.
(The notion of open subsets on X induces a notion of open subsets on X / \sim.)
(4) Let $[0,1]$ be the closed unit interval. Define an equivalence relation by setting $0 \sim 1$ and all other points are only equivalent to themself. Prove that the quotient space $X=[0,1] / \sim$ is homeomorphic to the circle $S^{1}=\left\{(x, y) \mid x^{2}+y^{2}=1\right\}$. (Hint: try sending $t \in[0,1]$ to $(\cos (2 \pi t), \sin (2 \pi t))$.)
(5) Let $D=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\}$ be the closed 2-dimensional disk. Consider two disjoint copies of D, D_{1} and D_{2}. Each D_{i} comes with a notion of open subsets from viewing D as a subspace of \mathbb{R}^{2}. We will say a subset U of the disjoint union $D_{1} \sqcup D_{2}$ is open if it is the union of an open subset (possibly empty) of D_{1} with an open subset (possibly empty) of D_{2}. Next, we define an equivalence relation \sim on the space $D_{1} \sqcup D_{2}$ as follows: $\left(x_{a}, y_{a}\right) \sim\left(x_{b}, y_{b}\right)$ if and only if one of the following holds

- $\left(x_{a}, y_{a}\right)=\left(x_{b}, y_{b}\right)$ (in particular they are in the same copy of $\left.D\right)$
- $\left(x_{a}, y_{a}\right) \in D_{1},\left(x_{b}, y_{b}\right) \in D_{2}, x_{a}=x_{b}, y_{a}=y_{b}$, and $x_{a}^{2}+y_{a}^{2}=1$
- $\left(x_{a}, y_{a}\right) \in D_{2},\left(x_{b}, y_{b}\right) \in D_{1}, x_{a}=x_{b}, y_{a}=y_{b}$, and $x_{a}^{2}+y_{a}^{2}=1$

Prove that the quotient space $X=D_{1} \sqcup D_{2} / \sim$ is homeomorphic to the 2-sphere.

3. The torus

One embedding of the torus T^{2} into \mathbb{R}^{3} is parameterized as follows:

$$
T^{2}=\left\{((2+\cos \phi) \cos \theta,(2+\cos \phi) \sin \theta, \sin \phi) \in \mathbb{R}^{3} \mid \phi, \theta \in \mathbb{R}\right\}
$$

where ϕ and θ parametrize angular coordinates as shown.

(6) Prove that T^{2} is a manifold by defining coordinate charts that cover T^{2}. (Make sure your coordinate domains are open and your coordinate maps are homeomorphisms.)

