HOMEWORK 3

MATH 180, WINTER 2023

1. MANIFOLDS WITH BOUNDARY

(1) Prove that the closed interval [0, 1] is a 1-dimensional manifold with boundary.
(2) Closed disk
(a) Show that the hemisphere H = {(z,y,2) | 2> + y* + 22 = 1,z > 0} is a 2-
dimensional manifold with boundary.
(b) Show that the hemisphere H is homeomorphic to the closed disk D = {(z,y) €
R? | 2%+ y* < 1}.
(c) Use the maps from the previous two parts to prove that the closed disk D =
{(x,y) € R* | 22 + y* < 1} is a manifold with boundary.
(3) Suppose X is an n-dimensional manifold with boundary. Let 0X denote the set of
points in the boundary of X. Show that 0X is an (n — 1)-dimensional manifold.

2. QUOTIENT TOPOLOGY

If we have a space X with an equivalence relation ~, there is a quotient map g : X — X/ ~
where X/ ~ is the set of equivalence classes of points in X (if two points are equivalent by
the ~ relation we glue them together and consider them the same point). We can turn X/ ~
from a set into a space by defining its open sets using the quotient topology.

Definition 1. A subset U of X/ ~ is open in the quotient topology if and only if ¢~ (U) C X
is open in X.

(The notion of open subsets on X induces a notion of open subsets on X/ ~.)

(4) Let [0,1] be the closed unit interval. Define an equivalence relation by setting 0 ~ 1
and all other points are only equivalent to themself. Prove that the quotient space
X =[0,1]/ ~ is homeomorphic to the circle S = {(z,y) | 22 + y? = 1}. (Hint: try
sending t € [0, 1] to (cos(27t), sin(27t)).)

(5) Let D = {(z,y) € R* | 22 + y* < 1} be the closed 2-dimensional disk. Consider
two disjoint copies of D, Dy and D,. Each D; comes with a notion of open subsets
from viewing D as a subspace of R%2. We will say a subset U of the disjoint union
Dy LI Dy is open if it is the union of an open subset (possibly empty) of D; with an
open subset (possibly empty) of D,. Next, we define an equivalence relation ~ on
the space Dy U Dy as follows: (x4,9,) ~ (2, ys) if and only if one of the following
holds

e (4,Y4) = (xp,yp) (in particular they are in the same copy of D)
o (Ta,Ya) € D1, (T, ) € Do, Ty = Ty, Yo = Y, and 22 + 32 = 1
® (Z4,Ya) € Do, (x4, 1) € D1, T = Ty, Yo = Yo, and 22 +y2 =1
Prove that the quotient space X = D; U Dy/ ~ is homeomorphic to the 2-sphere.
1



2 MATH 180, WINTER 2023
3. THE TORUS

One embedding of the torus 72 into R? is parameterized as follows:

T? = {((2 4 cos ¢) cos 0, (2 + cos ¢) sin 0, sin ¢) € R* | 6,0 € R}
where ¢ and ¢ parametrize angular coordinates as shown.
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(6) Prove that T? is a manifold by defining coordinate charts that cover T2. (Make sure
your coordinate domains are open and your coordinate maps are homeomorphisms.)
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