PROJECTIVE SPACES

MATH 180, WINTER 2023

The real n-dimensional projective space, $\mathbb{R}P^n$ is the quotient of $\mathbb{R}^{n+1} \setminus 0$ by the equivalence relation $(x_1, \dots, x_{n+1}) \sim (\lambda x_1, \dots, \lambda x_{n+1})$ for $\lambda \in \mathbb{R} \setminus 0$. A typical way to represent $\mathbb{R}P^n$ is to use homogeneous coordinates as follows:

 $\mathbb{R}P^{n} = \{ [x_{1} : x_{2} : \dots : x_{n}, x_{n+1}] \mid (x_{1}, x_{2}, \dots, x_{n}, x_{n+1}) \in \mathbb{R}^{n+1} \setminus (0, 0, \dots, 0, 0) \}$

where $[x_1:x_2:\cdots:x_n:x_{n+1}] = [\lambda x_1:\lambda x_2:\cdots:\lambda x_n:\lambda x_{n+1}].$

- (1) Explain how $\mathbb{R}P^n$ can be thought of as the space of lines in \mathbb{R}^{n+1} that pass through the origin.
- (2) Consider an equation of the form $a_1x_1 + \cdots + a_nx_n + a_{n+1}x_{n+1} = 0$ for coefficients $a_1, \cdots, a_n, a_{n+1}$. Show that a point $[x_1 : x_2 : \cdots : x_n : x_{n+1}]$ satisfies this equation if and only if $[\lambda x_1 : \lambda x_2 : \cdots : \lambda x_n : \lambda x_{n+1}]$ also satisfies the equation. Conclude that the set of points

 $\{[x_1:x_2:\cdots:x_n:x_{n+1}] \mid a_1x_1 + a_2x_2 + \cdots + a_nx_n + a_{n+1}x_{n+1} = 0\}$

is a well-defined subset of $\mathbb{R}P^n$. Such a subspace is called a *projective hyperplane*.

Let $X_1, Y_1 \subset \mathbb{R}P^n$ be the subsets

$$X_1 = \{ [x_1 : \dots : x_{n+1}] \mid x_1 = 1 \}$$
$$Y_1 = \{ [x_1 : \dots : x_{n+1}] \mid x_1 = 0 \}$$

- (3) Show that $\mathbb{R}P^n = X_1 \sqcup Y_1$ (i.e. show that every point in $\mathbb{R}P^n$ is either in X_1 or Y_1 and not both).
- (4) Show that X_1 is homeomorphic to \mathbb{R}^n .
- (5) Show that Y_1 is homeomorphic to $\mathbb{R}P^{n-1}$.
- (6) Prove that RPⁿ is a manifold of dimension n. (Hint: You gave one coordinate chart using X₁ above. To cover the other points, use an analogous set fixing a different coordinate.)
- (7) Think about the specific case where n = 1. Prove that \mathbb{RP}^1 is homeomorphic to the circle S^1 .

(8) Now think about the specific case where n = 2. Use the decomposition of \mathbb{RP}^2 into $X_1 \cong \mathbb{R}^2$ and $Y_1 \cong \mathbb{RP}^1$ as above (and the analogous decomposition for \mathbb{RP}^1), together with the fact that \mathbb{R}^n is homeomorphic to the open *n*-dimensional ball, to find a way to identify this descrption of \mathbb{RP}^2 with the polygonal representation.

Analogously, using the same equations, just changing real numbers to complex numbers, we can define the *complex n-dimensional projective space* \mathbb{CP}^n as the quotient of $\mathbb{C}^{n+1} \setminus 0$ by the equivalence relation $(z_1, \dots, z_{n+1}) \sim (\lambda z_1, \dots, \lambda z_{n+1})$ for $\lambda \in \mathbb{C} \setminus 0$. (Here we are using multiplication of complex numbers. Each $z_j = x_j + iy_j$ and $\lambda = \mu + i\nu$. $\lambda z_j = \mu x_j - \nu y_j + i(\nu x_j + \mu y_j)$.) \mathbb{CP}^n also has homogeneous coordinates:

$$\mathbb{C}\mathbf{P}^{n} = \{ [z_{1} : z_{2} : \dots : z_{n}, z_{n+1}] \mid (z_{1}, z_{2}, \dots, z_{n}, z_{n+1}) \in \mathbb{C}^{n+1} \setminus (0, 0, \dots, 0, 0) \}$$

where $[z_1 : z_2 : \dots : z_n : z_{n+1}] = [\lambda z_1 : \lambda z_2 : \dots : \lambda z_n : \lambda z_{n+1}].$

(9) Use the analogous decomposition of \mathbb{CP}^n into $X_1 \cup Y_1$. Show that X_1 is homeomorphic to \mathbb{R}^{2n} and Y_1 is homeomorphic to \mathbb{CP}^{n-1} .