PROJECTIVE SPACES

MATH 180, WINTER 2023

The real n-dimensional projective space, $\mathbb{R P}^{n}$ is the quotient of $\mathbb{R}^{n+1} \backslash 0$ by the equivalence relation $\left(x_{1}, \cdots, x_{n+1}\right) \sim\left(\lambda x_{1}, \cdots, \lambda x_{n+1}\right)$ for $\lambda \in \mathbb{R} \backslash 0$. A typical way to represent \mathbb{R}^{n} is to use homogeneous coordinates as follows:

$$
\mathbb{R} P^{n}=\left\{\left[x_{1}: x_{2}: \cdots: x_{n}, x_{n+1}\right] \mid\left(x_{1}, x_{2}, \cdots, x_{n}, x_{n+1}\right) \in \mathbb{R}^{n+1} \backslash(0,0, \cdots, 0,0)\right\}
$$

where $\left[x_{1}: x_{2}: \cdots: x_{n}: x_{n+1}\right]=\left[\lambda x_{1}: \lambda x_{2}: \cdots: \lambda x_{n}: \lambda x_{n+1}\right]$.
(1) Explain how $\mathbb{R} P^{n}$ can be thought of as the space of lines in \mathbb{R}^{n+1} that pass through the origin.
(2) Consider an equation of the form $a_{1} x_{1}+\cdots+a_{n} x_{n}+a_{n+1} x_{n+1}=0$ for coefficients $a_{1}, \cdots, a_{n}, a_{n+1}$. Show that a point $\left[x_{1}: x_{2}: \cdots: x_{n}: x_{n+1}\right]$ satisfies this equation if and only if $\left[\lambda x_{1}: \lambda x_{2}: \cdots: \lambda x_{n}: \lambda x_{n+1}\right]$ also satisfies the equation. Conclude that the set of points

$$
\left\{\left[x_{1}: x_{2}: \cdots: x_{n}: x_{n+1}\right] \mid a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}+a_{n+1} x_{n+1}=0\right\}
$$

is a well-defined subset of $\mathbb{R P}^{n}$. Such a subspace is called a projective hyperplane.

Let $X_{1}, Y_{1} \subset \mathbb{R} P^{n}$ be the subsets

$$
\begin{aligned}
& X_{1}=\left\{\left[x_{1}: \cdots: x_{n+1}\right] \mid x_{1}=1\right\} \\
& Y_{1}=\left\{\left[x_{1}: \cdots: x_{n+1}\right] \mid x_{1}=0\right\}
\end{aligned}
$$

(3) Show that $\mathbb{R} P^{n}=X_{1} \sqcup Y_{1}$ (i.e. show that every point in $\mathbb{R} P^{n}$ is either in X_{1} or Y_{1} and not both).
(4) Show that X_{1} is homeomorphic to \mathbb{R}^{n}.
(5) Show that Y_{1} is homeomorphic to $\mathbb{R} \mathrm{P}^{n-1}$.
(6) Prove that $\mathbb{R P}^{n}$ is a manifold of dimension n. (Hint: You gave one coordinate chart using X_{1} above. To cover the other points, use an analogous set fixing a different coordinate.)
(7) Think about the specific case where $n=1$. Prove that $\mathbb{R P}^{1}$ is homeomorphic to the circle S^{1}.
(8) Now think about the specific case where $n=2$. Use the decomposition of $\mathbb{R} \mathrm{P}^{2}$ into $X_{1} \cong \mathbb{R}^{2}$ and $Y_{1} \cong \mathbb{R P}^{1}$ as above (and the analogous decomposition for $\mathbb{R P}^{1}$), together with the fact that \mathbb{R}^{n} is homeomorphic to the open n-dimensional ball, to find a way to identify this descrption of $\mathbb{R} \mathrm{P}^{2}$ with the polygonal representation.

Analogously, using the same equations, just changing real numbers to complex numbers, we can define the complex n-dimensional projective space $\mathbb{C P}^{n}$ as the quotient of $\mathbb{C}^{n+1} \backslash 0$ by the equivalence relation $\left(z_{1}, \cdots, z_{n+1}\right) \sim\left(\lambda z_{1}, \cdots, \lambda z_{n+1}\right)$ for $\lambda \in \mathbb{C} \backslash 0$. (Here we are using multiplication of complex numbers. Each $z_{j}=x_{j}+i y_{j}$ and $\lambda=\mu+i \nu . \lambda z_{j}=$ $\left.\mu x_{j}-\nu y_{j}+i\left(\nu x_{j}+\mu y_{j}\right).\right) \mathbb{C P}^{n}$ also has homogeneous coordinates:
$\mathbb{C} \mathrm{P}^{n}=\left\{\left[z_{1}: z_{2}: \cdots: z_{n}, z_{n+1}\right] \mid\left(z_{1}, z_{2}, \cdots, z_{n}, z_{n+1}\right) \in \mathbb{C}^{n+1} \backslash(0,0, \cdots, 0,0)\right\}$
where $\left[z_{1}: z_{2}: \cdots: z_{n}: z_{n+1}\right]=\left[\lambda z_{1}: \lambda z_{2}: \cdots: \lambda z_{n}: \lambda z_{n+1}\right]$.
(9) Use the analogous decomposition of $\mathbb{C} \mathrm{P}^{n}$ into $X_{1} \cup Y_{1}$. Show that X_{1} is homeomorphic to $\mathbb{R}^{2 n}$ and Y_{1} is homeomorphic to $\mathbb{C} P^{n-1}$.

