
HOMEOMORPHISMS OF THE TORUS

MATH 180, WINTER 2023

As you research, you may find more examples, definitions, and questions, which you defi-

nitely should feel free to include in your notes and presentation, but make sure you at least

answer the following questions.

First we will think about homeomorphisms of the torus, described using matrices. In order

to understand this, we need to describe the torus in a slightly new way. Consider R2 with

the equivalence relation (x, y) ∼ (x+ n, y +m) for any integers n,m ∈ Z. The torus T 2 can

be viewed as the quotient space of R2 by this equivalence relation T 2 = R2/ ∼ (this is also

sometimes written as T 2 = R2/Z2).

(1) Explain in words how this description of the torus as R2/ ∼ gives the same answer

as the description of the torus as the square with opposite sides glued together.

(2) Now consider a 2× 2 matrix with integer entries:

A =

[
a b

c d

]
We can define a map A : T 2 → T 2 that sends a point [(x, y)] ∈ T 2 = R2/ ∼ to

A([(x, y)]) =

[[
a b

c d

][
x

y

]]
= [(ax+ by, cx+ dy)]

(a) Prove that A is well-defined. Namely, if (x, y) ∼ (x + n, y +m) prove that the

definition of A gives equivalent (by ∼) values for A(x, y) and A(x+ n, y +m).

(b) If the matrix A has an entry which is not an integer, prove that the map defined

by A is not well-defined as a map from R2/ ∼ to R2/ ∼.

(c) Show that if the 2×2 matrix A has integer entries, then it has an inverse matrix

A−1 with integer entries if and only if det(A) = 1.

(d) Put this together to show that if A is a 2 × 2 matrix with integer entries and

det(A) = 1, then it defines a homeomorphism from T 2 to T 2.

Notice that every equivalence class in R2/ ∼ has a representative in the square [0, 1]×[0, 1].

A closed curve in the torus will look like an arc in the square (where the end points lie on

points on the sides of the square which get identified to form a closed loop). In R2 it would

look like this same arc repeated like a tile in every 1× 1 square.
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(3) Draw the following curves of the torus on the square (measure carefully and make

sure that you align points which are identified on the left and right sides or top and

bottoms sides):

(a) C1 = {(x, 0)}
(b) C2 = {(0, y)}
(c) C3 = {(2t, 3t)}
(d) C4 = {(t, 4t)}
(e) Consider the homeomorphism defined by the matrix

A =

[
2 1

3 2

]
Check the determinant is 1 so this actually gives a homeomorphism. Then find

the image of C1 and C2 under the homeomorphism A. Describe the curves in

the images with equations and draw them on the square.

Another way to define homeomorphisms on surfaces is using Dehn twists. A Dehn twist is

specified by a curve. If we look at an open neighborhood of a curve, it looks like an annulus

as below. The Dehn twist is defined by cutting along the center curve, then twisting the

center curve on one side of the cut by 360◦ and then gluing back together. Because after a

360◦ rotation, the points along the cut end up back where they started, this is a continuous

map. Doing the same thing but rotating 360◦ in the other direction gives the inverse map,

so this is a homeomorphism. Notice that this homeomorphism moves points that are near

the curve where the cut and twist happened. For example, the image of the red arc under

the Dehn twist is shown below. (The arc gets twisted around the curve.)

If the twisting is done as in this figure, we will call it a left handed Dehn twist. Twisting

the opposite direction is a right handed Dehn twist. (These are inverses of each other if done

along the same curve.)
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By inserting the annulus as a subset of another surface Σ where the central curve is

matched up with a chosen curve C in Σ, we can define the Dehn twist about C as a homeo-

morphism from Σ to Σ.

(4) Let Σ = T 2 = R2/ ∼ as above and let C = {(t, 1
2
)}. Let Φ : T 2 → T 2 be the

homeomorphism given by the left handed Dehn twist about C. Draw the images of

C1, C2, C3, and C4 under Φ using the square model of the torus. (You’ll need to be

particularly careful to line up points which are identified on the left and right and

top and bottom.)

An isotopy is a 1-parameter continuous deformation. Things which are related by an

isotopy are called isotopic. For example, an isotopy between two curves C0 and C1 is a

1-parameter family of curves Ct for t ∈ [0, 1] which vary continuously with t. Similarly

an isotopy of homeomorphisms Φ0 : A → B and Φ1 : A → B is a 1-parameter family

of homeomorphisms Φt : A → B varying continuously with t. We often think of two

homeomorphisms as “the same” if they are isotopic, so we are interested in determining

when homeomorphisms are isotopic and when they are not.

An important theorem which is useful for classifying homeomorphisms of surfaces up to

isotopy is called Alexander’s Lemma which is as follows:

Theorem 1 (Alexander’s Lemma). Suppose we have a set of closed curves C1, . . . , Cn ⊂ Σ

which cuts the surface Σ into something homeomorphic to a disk. Let Φ1 : Σ → Σ and

Φ2 : Σ → Σ be two homeomorphisms. Then Φ1 is an isotopic homeomorphism to Φ2 if and

only if Φ1(Ci) is isotopic to Φ2(Ci) for all i = 1, . . . , n.

Note that if we have a polygonal representation of the surface Σ, in Alexander’s Lemma

we can take all the curves given by joining the edges of the polygonal representation as

C1, . . . , Cn since the polygon is homeomorphic to the disk. For example, in the torus, we

can take the vertical and horizontal edges which are the curves C1 and C2 from problem 3.

(5) Let Φ1 : T
2 → T 2 be the left handed Dehn twist about the curve C as in problem 4.

Let Φ2 : T
2 → T 2 be the homeomorphism of the torus determined by the matrix[

1 0

−1 1

]
Show (using pictures) that Φ1(C1) and Φ2(C1) are isotopic and Φ1(C2) and Φ2(C2)

are isotopic. Use Alexander’s Lemma to conclude that Φ1 and Φ2 are isotopic home-

omorphisms.
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(6) Follow the same strategy to show that the right handed Dehn twist about C is isotopic

to the homeomorphism determined by the matrix[
1 0

1 1

]
(7) Now consider the homeomorphism given by applying the left handed Dehn twist

about the curve C two times. Find the images of C1 and C2 after applying the left

handed Dehn twist about C twice. Compare these to the images of C1 and C2 under

the homeomorphism given by the matrix[
1 0

−2 1

]
.

Show by Alexander’s Lemma that these two homeomorphisms are isotopic. How else

would you know that these two homeomorphisms are the same (isotopic)? [Hint: the

compositions of isotopic homeomorphisms are isotopic.]

(8) Consider another curve D = {(1
2
, t)} in the torus. Show that a left handed Dehn

twist around D is isotopic to the homeomorphism determined by the matrix[
1 1

0 1

]
.

(9) Find the inverse matrix of [
1 1

0 1

]
.

Why is this inverse matrix isotopic to the right handed Dehn twist around D?

(10) Show using matrix multiplication that you can write any matrix

A =

[
a b

c d

]
with det(A) = 1 as a product of copies of the matrices[

1 0

1 1

]
,

[
1 0

−1 1

]
,

[
1 1

0 1

]
,

[
1 −1

0 1

]
.

Using this, explain how you can get (an isotopic version of) the homeomorphism of

the torus

A =

[
a b

c d

]
as a repeated product of left/right handed Dehn twists about the curves C and/or

D.


