HOMEWORK 2 (MAT 215A) TOPOLOGY

LAURA STARKSTON

(1) Using the decomposition from the previous homework, find cell decompositions of $\mathbb{R}P^n$ and $\mathbb{C}P^n$, specifying the number of k-cells for each k and writing down the gluing maps $f_i: S^{k-1} \to X^{k-1}$.

Definition: A space X is contractible if the identity map $id_X : X \to X$ $(id_X(x) = x)$ is homotopic to a constant map $c : X \to X$ $(c(X) = x_0$ for all $x \in X$).

- (2) Recall that the cone of a space X, is the cone of its identity map so: $CX = X \times [0,1]/\sim$ where $(x,1) \sim (x',1)$ for all $x, x' \in X$. Prove that CX is contractible.
- (3) Prove that a space is contractible if and only if it is homotopy equivalent to a point.
- (4) Let X be a contractible space. Let $A \subset X$ and $r: X \to A$ a retract. Show that A is contractible.
- (5) Let $A \subset X$ be a deformation retract of X. Suppose A is contractible. Show that X is contractible.
- (6) Prove that if X is homotopy equivalent to Y then ΣX is homotopy equivalent to ΣY. For the following problems, let (X, x₀) be a pointed space. Let γ : [0, 1] → X be any loop with γ(0) = γ(1) = x₀.
- (7) Let $e: [0,1] \to X$ be the constant loop $e(t) = x_0$. Write down a homotopy in explicit coordinates from $e \star \gamma$ to γ and from $\gamma \star e$ to γ .
- (8) Let $\overline{\gamma}(t) = \gamma(1-t)$. Prove that $\gamma \star \overline{\gamma}$ and is homotopic to the constant loop e (writing the homotopy in explicit coordinates). Conclude that $\overline{\gamma} \star \gamma$ is homotopic to the constant loop as well by substituting γ with $\overline{\gamma}$.
- (9) Let $\gamma_1, \gamma_2, \gamma_3 : [0, 1] \to X$ all be loops based at x_0 . Write down a homotopy in explicit coordinates from $(\gamma_1 \star \gamma_2) \star \gamma_3$ to $\gamma_1 \star (\gamma_2 \star \gamma_3)$.
- (10) Show that if $X = \mathbb{R}^n$ and $x_0 \in X$ then $\pi_1(X, x_0)$ is the trivial group.