HOMEWORK 4 (MAT 215A) TOPOLOGY

LAURA STARKSTON

- (1) Prove that if X and Y are spaces and $x_0 \in X$, $y_0 \in Y$, then $\pi_n(X \times Y, (x_0, y_0)) \cong \pi_n(X, x_0) \times \pi_n(Y, y_0)$.
- (2) If X and Y are homotopy equivalent (i.e. there exist maps $f: X \to Y$ and $g: Y \to X$ such that $f \circ g \simeq 1_Y$ and $g \circ f \simeq 1_X$) show that $\pi_n(X, x_0)$ is isomorphic to $\pi_n(Y, y_0)$.
- (3) Suppose there is a retract (not necessarily a deformation retract) $r: X \to A$. Show that the inclusion map $i_*: \pi_n(A, x_0) \to \pi_n(X, x_0)$ is injective, $\partial: \pi_n(X, A, x_0) \to \pi_{n-1}(A, x_0)$ is the zero map, and $j_*: \pi_n(X, x_0) \to \pi_n(X, A, x_0)$ is surjective. You may use the long exact sequence to deduce one of two of these after proving the others. Assume $n \ge 2$.
- (4) Let $E = S^3 = \{(z_1, z_2) \in \mathbb{C}^2 \mid |z_1|^2 + |z_2|^2 = 1\}$, and $B = \mathbb{CP}^1$ (which is homeomorphic to S^2). Show that the map

$$p: S^3 \to \mathbb{C}\mathrm{P}^1$$

given by $p(z_1, z_2) = [z_1 : z_2]$ is a fibration whose fiber is S^1 . You can also show an analogous thing in general for $p: S^{2n+1} \to \mathbb{CP}^n$.

(5) SO(n) is the group of $n \times n$ orientation preserving matrices which preserve the standard Euclidean metric on \mathbb{R}^n . Since these matrices preserve the vectors of length 1, SO(n) acts on $S^{n-1} \subset \mathbb{R}^n$. Show that the matrices in SO(n) fixing a particular point $x \in S^{n-1}$ form a subset isomorphic to SO(n-1). Verify that SO(n) acts transitively on S^{n-1} . Conclude that there is a quotient map $p: SO(n) \to S^{n-1}$ (where we identify S^{n-1} with the space of orbits of the SO(n-1) action on SO(n)). Show that this quotient map is a fibration with fibers SO(n-1).