MIDTERM (215A) TOPOLOGY

LAURA STARKSTON

Rules:

- You may not discuss anything about the problems on this midterm with any other person, except to ask questions via email to Laura Starkston.
- You may use Hatcher and your class notes as a reference. You may not use the internet as a reference.
- You may quote theorems that were proven in class or are proven in Hatcher in your proofs.
- You may assume that continuous maps between Euclidean spaces are continuous, without proof.
- (1) Write down an explicit homotopy (in coordinates) between the following two loops based at the origin in $X = \mathbb{R}^2 \setminus \{(18, 18), (22, 22)\}$.

- (2) Let $X = T^2 \times I/\sim$ (here $T^2 = S^1 \times S^1$ is the torus and I = [0, 1]) where the equivalence relation \sim is defined by $(p, 0) \sim (f(p), 1)$ for every $p \in T^2$ where $f : T^2 \to T^2$ is the homeomorphism defined by identifying $T^2 = \mathbb{R}^2/\mathbb{Z}^2$ and letting f([(x, y)]) = [(x, nx + y)] where $n \in Z$. (X is called the mapping torus of f.) Let x_0 be the equivalence class of the point ([(0, 0)], 0). Give a presentation for the group $\pi_1(X, x_0)$ using Seifert-van Kampen.
- (3) Here we will examine the fundamental group of \mathbb{RP}^3 .
 - (a) Let $p_0 = [0:0:0:1]$. Calculate the fundamental group $\pi_1(\mathbb{RP}^3, p_0)$ using the cell decomposition and the Seifert van Kampen theorem.
 - (b) Show that the map $q: S^3 \to \mathbb{R}P^3$ obtained by the quotient relation $q(x_0, x_1, x_2, x_3) = [x_0: x_1: x_2: x_3]$ is a covering map.
 - (c) What is $q^{-1}([0:0:0:1])$?
 - (d) Let $s_0 = (0, 0, 0, 1)$. What is the covering subgroup $q_*(\pi_1(S^3, s_0)) \subseteq \pi_1(\mathbb{RP}^3, p_0)$? Check that the quotient is in bijection with $q^{-1}([0:0:0:1])$.
 - (e) Without using Seifert van Kampen, and only using covering spaces, how could you have calculated $\pi_1(\mathbb{RP}^3, p_0)$?
- (4) Let $X = S_1^1 \vee S_2^1$ where S_1^1 and S_2^1 are both copies of the circle. Let $A \subset X$ be the subset S_1^1 included into the wedge sum. Construct an infinite family of retractions $r_n : S_1^1 \vee S_2^1 \to S_1^1$ such that if $n \neq m$ r_n is not homotopic to r_m . (Define r_n and prove that the maps are not homotopic).
- (5) Consider the two spaces and the covering map between them indicated by the projection $p: \widetilde{X} \to X$.

- (a) Give a presentation for $\pi_1(\widetilde{X}, y)$. Draw the generating loops on a copy of the picture of \widetilde{X} .
- (b) Given generators a and b as shown for $\pi_1(X, x)$, determine where p_* sends each of your generators of $\pi_1(\widetilde{X}, y)$. Use this to give a presentation for the subgroup $p_*(\pi_1(\widetilde{X}, y))$.
- (c) Show explicitly in this example the bijection between the cosets $p_*(\pi_1(\widetilde{X}, y)) \setminus \pi_1(X, x)$ with the points of $p^{-1}(x)$.
- (d) Define a space Y and a covering map $p: Y \to X$ such that the covering group $p_*(\pi_1(Y, y_0))$ is the subgroup of $\pi_1(X, x)$ generated by $a^3, b, aba^{-1}, a^2ba^{-2}$.
- (e) Prove that for every $n \ge 2$, there exists a space \widetilde{X}_n such that \widetilde{X}_n is homotopy equivalent to the wedge of n circles and there exists a covering map $p: \widetilde{X}_n \to X$. (X is still the wedge of two circles as above.)

- (6) Consider the maps $p_k : S^1 \to S^1$ defined by $p_k(e^{i\theta}) = e^{ik\theta}$. Let $1 = e^{i\cdot 0}$ be a base point in S^1 . Recall that each of these maps is a covering map when k is a positive integer.
 - (a) What is the covering group $(p_k)_*(\pi_1(S^1, 1)) \subset \pi_1(S^1, 1) \cong \mathbb{Z}$?
 - (b) What if p_k and p_ℓ are two such covering maps, what condition on the positive integers k and ℓ ensures that $(p_k)_*(\pi_1(S^1, 1)) \subset (p_\ell)_*(\pi_1(S^1, 1))$?
 - (c) Find explicitly a lift g (define $g: S^1 \to S^1$) such that the following diagram commutes, assuming that your criterion in terms of k and ℓ in the previous part is satisfied.

