HOMEWORK 4 (MAT 215B) TOPOLOGY

LAURA STARKSTON

(1) Using the isomorphism between simplicial and singular homology and a A-complex structure of your

choice, calculate H, (X ) where X is the space obtained from identifying all n sides of an n-gon in a

counter-clockwise orientation as in the figure below.

(2) In this problem, we will reprove the calculation of homology for the genus g surface.

(a)

Put a A-complex structure on the torus 72, and provide the complete computation of the
simplicial homology groups of T2 using this A-complex structure. Using the isomorphism
between simplicial and singular homology, conclude the calculation of the isomorphism types of
the singular homology groups of the torus.

Let D' = T? be a small closed disk embedded in the torus. Calculate the isomorphism type of
H,(T?%, D) for all n. Let D € D’ = T? be a smaller radius open disk such that D is contained
in the interior of D’. Calculate H, (T%\D, D'\D) for all n, and specify cycles representing the
generators.

Let 5 be the connected sum of two copies of T2: namely Xy = ((T2\D1) u (I£\D1)) / ~ where
the equivalence relation glues together the boundaries of the two copies of D along the identity
map. Let A denote the subset A = ((D{\D1) u (D5\D2))/ ~. Prove that the quotient map

induces an isomorphism on relative homology
s+ Hy (TP\Dy L T5\Dy, D)\Dy 1 D{\Dy) — H,, (32, A)
Use this to calculate
Hn(227 A)

for each n, and specify cycles representing the generators.
Show that A is homotopy equivalent to S!, and use this to calculate H,,(A) for each n.

Calculate the map induced by the inclusion
iyt Hp(A) > Hp(X)

by specifying where there generators are sent.
Using the exact sequence of the pair (3o, A) and your previous results, calculate H,(X2) up to

isomorphism for all n.
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(g) Generalize this argument for the connected sum of g copies of T2 (you can either choose g — 1
small disks on the first copy of T? to delete and glue on g — 1 additional T?\D’s, or you can
inductively connect sum ¥,_; with 7).

(3) Let T? denote the torus. Using the long exact sequence of a pair, calculate relative homology for
the following pairs, and describe representatives for a generating set. Note that you will need to
understand the maps induced by the inclusion of the subspace into the larger space.

(a) (T2, M) where M is a meridional circle.

(b) (T?,C) where C is a circle in T? which bounds a disk.

(¢) (T?,M u M’) where M and M’ are disjoint parallel meridional circles.

(4) A knot is the image of an embedding of S! into S3. Let K < S be a knot, such that it has a
closed neighborhood N homeomorphic to S' x D? where D? denotes the closed disk. Let N denote
the boundary of the neighborhood N (i.e. the image of S' x S! under the identification of N with
S1 x D?). Using the exact sequence of the pair (S®, N) and excision, calculate the relative homology

groups of the knot complement rel boundary: H, (S*\N,dN) for all n.



