Midterm 1

Math 22A, Fall 2019

Name: Starkston Solutions

Student ID:

You do not need to simplify numerical expressions for your final answers (e.g. you cam write $3-\frac{3}{4}$ instead of simplifying to $\frac{9}{4}$.)

$$
\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|\|\mathbf{w}\|}=\cos \theta
$$

Problem 1 (8pts): Calculate the vector given by the following linear combination

$$
c\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]+d\left[\begin{array}{c}
2 \\
0 \\
-2
\end{array}\right]
$$

Answer (2pts): $\left[\begin{array}{c}c+2 d \\ 0 \\ -c-2 d\end{array}\right]$
All linear combinations of

$$
\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right] \text { and }\left[\begin{array}{c}
2 \\
0 \\
-2
\end{array}\right] \text { fill: }
$$

A. A Line
B. A Plane
C. A Point
D. Three-dimensional space

Answer (3pts): A

All linear combinations of

$$
\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right] \text { and }\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \text { fill: }
$$

A. A Line
B. A Plane
C. A Point
D. Three-dimensional space

Answer (3pts):

Problem 2 (10pts): Determine whether the following vectors are perpendicular:

$$
\begin{aligned}
& {\left[\begin{array}{c}
3 \\
2 \\
-1
\end{array}\right] \text { and }\left[\begin{array}{c}
1 \\
-2 \\
-1
\end{array}\right] \quad \begin{array}{l}
3 \cdot 1+2(-2)+(-1)(-1) \\
=3-4+1 \\
\text { A. Perpendicular } \\
\text { B. Not perpendicular }
\end{array}}
\end{aligned}
$$

Answer (2pts):

$$
\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \text { and }\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right] \quad 1 \cdot 1+1 \cdot 3+1 \cdot 2 \neq 0
$$

A. Perpendicular
B. Not perpendicular

Calculate the length of the vector
Answer (2pts): B

$$
\left[\begin{array}{c}
1 \\
2 \\
-2
\end{array}\right]
$$

$$
\sqrt{1^{2}+2^{2}+(-2)^{2}}=\sqrt{1+4+4}=\sqrt{9}=3 \text { Length }(2 \mathrm{pts}):
$$

Are the following matrix multiplications possible or impossible?

$$
\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 2 & 1 \\
-2 & 0 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
1 & 2 \\
-2 & -1
\end{array}\right]
$$

A. Possible
B. Impossible

$$
\left[\begin{array}{cc}
1 & 2 \\
0 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{c}
3 \\
0 \\
-2
\end{array}\right]
$$

A. Possible
B. Impossible

Problem 3 (12pts): Find a matrix to fill in the blanks which performs the row operation which replaces row 3 by (row 3) +2 (row 1) (3 pts):

$$
\left[\begin{array}{ccc}
\frac{1}{O} & \frac{O}{1} & \frac{O}{O} \\
\frac{1}{2} & \frac{O}{\circ} & \frac{1}{l}
\end{array}\right]\left[\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]=\left[\begin{array}{ccc}
a & b & c \\
d & c & f \\
g+2 a & h+2 b & i+2 c
\end{array}\right]
$$

Write out the following system of equations in matrix form $A x=b$ (2pts):

$$
\begin{aligned}
& x_{1}-2 x_{2}+x_{3}=1 \\
&-x_{2}+2 x_{3}=2 \\
&-2 x_{1}+4 x_{2}-2 x_{3}=3 \\
& {\left[\frac{1}{\frac{0}{-2}} \frac{-2}{\frac{-1}{4}} \frac{1}{\frac{-2}{-2}}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\frac{1}{\frac{2}{3}}\right] }
\end{aligned}
$$

Perform the row operation given by the matrix in the first part of this problem to the matrix equation $A x=b$ in the second part of the problem to change the matrix A to one witl a 0 in the position specified below (4 pts):

$$
\left[\begin{array}{lll}
\frac{1}{0} & \frac{-2}{-1} & \frac{1}{2} \\
\frac{-2}{0} & \frac{0}{0}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{2} \\
\frac{5}{5}
\end{array}\right]
$$

Does the system of equations have
A. One solution
B. Infinitcly many solutions
C. No solutions

Answer (3pts): $\quad C$

Problem 4 (14 pts): State whether or not the following matrices have an inverse or not:

$$
\left[\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right]
$$

A. Has an inverse
B. No inverse

Answer (3pts): A
$\left[\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right] \rightarrow\left[\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right]$
A. Has an inverse
B. No inverse

Answer (3pts): B
Calculate A^{-1} if A is the matrix

$$
A=\left[\begin{array}{ccc}
2 & -4 & 0 \\
0 & -1 & 0 \\
2 & -3 & 1
\end{array}\right] \quad R 3 \rightarrow R 3-R 1
$$

$\left.\left[\begin{array}{ccc|ccc}2 & -4 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 1 & 0 \\ 2 & -3 & 1 & 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{ccc|ccc}2 & -4 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & -1 & 0 & 1\end{array}\right]\right) R 3 \rightarrow R 3+R 2$
\(C\left[\begin{array}{ccc|ccc}2 \& -4 \& 0 \& 1 \& 0 \& 0

0 \& -1 \& 0 \& 0 \& 1 \& 0

0 \& 0 \& 1 \& -1 \& 1 \& 1\end{array}\right] \xrightarrow{R 1 \rightarrow \frac{1}{2} R 1}\)| $R 2 \rightarrow R 2$ |
| :---: | :---: | :---: | :---: | :---: | :---: |\(\left[\begin{array}{ccc}1 \& -2 \& 0

0 \& 1 \& 0

0 \& 0 \& 1

0 \& -1 \& 1

0 \& 1\end{array}\right] \xrightarrow[R 1 \rightarrow R 1+2 R 2]{ }\)
$\left[\begin{array}{lll|lcc}1 & 0 & 0 & 1 / 2 & -2 & 0 \\ 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & -1 & 1 & 1\end{array}\right]$

Problem 5 (12pts): Solve for the vector x :
Solve $A x=b$ if

$$
\begin{gathered}
A=\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 5 & 1 \\
1 & 3 & 1
\end{array}\right], b=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad \text { and } A^{-1}=\left[\begin{array}{ccc}
2 & 1 & -3 \\
-1 & 0 & 1 \\
1 & -1 & 1
\end{array}\right] \\
X=A^{-1} b=\left[\begin{array}{ccc}
2 & 1 & -3 \\
-1 & 0 & 1 \\
1 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-3 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right] \\
\text { Answer (4pts): }\left[\begin{array}{c}
-1 \\
0 \\
2
\end{array}\right]
\end{gathered}
$$

Solve $A x=b$ if $A=L U$ where

$$
\begin{aligned}
& L=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], U=\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & -1 & 0 \\
0 & 0 & 2
\end{array}\right], \quad \text { and } b=\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right] \\
& A x=b \Leftrightarrow L U x=b \Leftrightarrow U x=L^{-1} b \\
& L^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad L^{-1} b=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right] \\
& U x=L^{-1} b \leftrightarrow\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & -1 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]:\left[\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right] \\
& x+y+z=2 \rightarrow x=2-y-z=2-1-1=0 \\
& -y=-1 \rightarrow y=1 \\
& 2 z=2 \rightarrow z=1 \\
& \text { Answer (pts): } \\
& {\left[\begin{array}{l}
i \\
i
\end{array}\right]}
\end{aligned}
$$

