Midterm 2

Math 22A, Fall 2019

Name:
 Solutions

Student ID:

You do not need to simplify numerical expressions for your final answers (e.g. you can write $3-\frac{3}{4}$ instead of simplifying to $\frac{9}{4}$.)

$$
\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|\|\mathbf{w}\|}=\cos \theta
$$

The formula for the projection matrix is

$$
\begin{aligned}
P & =A\left(A^{T} A\right)^{-1} A^{T} \\
P v & =A\left(A^{T} A\right)^{-1} A^{T} v
\end{aligned}
$$

When the projection is onto a line spanned by a single vector a, the projection matrix is

$$
\begin{gathered}
P_{a}=\frac{a a^{T}}{a^{T} a} \\
P_{a} v=\frac{a a^{T}}{a^{T} a} v=a\left(\frac{a^{T} v}{a^{T} a}\right)
\end{gathered}
$$

Problem 1 (8 pts): Consider the subset S of \mathbb{R}^{2} of vectors $\left[\begin{array}{l}x \\ y\end{array}\right]$ such that $x y^{2}=0$.
(a) (3pts) Is S closed under scalar multiplication? Prove it is or give an example of a vector v in S and a scalar c such that $c v$ is not in S.

If $\left[\begin{array}{l}x \\ y\end{array}\right]$ is in $S \quad x y^{2}=0$
For any c in $\mathbb{R}, \quad c\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}c x \\ c y\end{array}\right]$ satisfies $(c x)(c y)^{2}=c^{3} x y^{2}=c^{3}(0)=0$
So $c\left[\begin{array}{l}x \\ y\end{array}\right]$ is in S.
Therefore S is closed under scaler multiplication
(b) (3pts) Is S closed under addition? Prove it is or give an example of vectors v_{1}, v_{2} in S such that $v_{1}+v_{2}$ is not in S.
S is not closed under addition
For example $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ are in S because

$$
1 \cdot 0^{2}=0 \text { ad } 0 \cdot 1^{2}=0
$$

but

$$
\begin{gathered}
{\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \text { is not in } S \text { be cause }} \\
1.1^{2} \neq 0
\end{gathered}
$$

(c) (2pts) Is S a subspace of \mathbb{R}^{2} ?

Subspace
Not Subspace

Problem 2 (8 pts):

$$
U=\left[\begin{array}{cccc}
-1 & 8 & 1 & 4 \\
0 & 3 & 2 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(a) (3pts) Write down 3 columns of U which are linearly independent.

$$
\left.\left.\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0
\end{array}\right], \underset{V_{1}}{[} \underset{V_{2}}{\left[\begin{array}{l}
1 \\
2 \\
0 \\
0
\end{array}\right], \underset{V_{3}}{\left[\begin{array}{l}
4 \\
0 \\
1 \\
0
\end{array}\right]}(0 R} \underset{0}{-1} \begin{array}{c}
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
8 \\
3 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
4 \\
0 \\
1 \\
0
\end{array}\right]\right)
$$

(b) (5pts) Give a proof that these 3 columns are linearly independent.

$$
\text { If } c_{1}\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{l}
1 \\
2 \\
0 \\
0
\end{array}\right]+c_{3}\left[\begin{array}{l}
4 \\
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

then $\left[\begin{array}{c}-c_{1}+c_{2}+4 c_{3} \\ 2 c_{2} \\ c_{3} \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right] \begin{array}{rrr} & \left.\left.\text { so } \begin{array}{l}-c_{1}+c_{2}+4 c_{3}\end{array}\right] \begin{array}{l}2 c_{2} \\ \\ \end{array} \quad \begin{array}{ll}\text { and } & c_{3}\end{array}\right]=0\end{array}$

$$
\Rightarrow \quad \begin{aligned}
c_{1} & =c_{2}+4 c_{3}=0 \\
c_{2} & =0 \\
c_{3} & =0
\end{aligned}
$$

Therefore the only linear combination of v_{1}, v_{2}, v_{3} giving $\overrightarrow{0}$ is when $c_{1}=c_{2}=c_{3}=0$

Thus $\left(v_{1}, v_{2}, v_{3}\right)$ ane linearly independent.

Problem 3 (10 pts): Let

$$
A=\left[\begin{array}{cc}
-1 & 4 \\
2 & -8
\end{array}\right]
$$

Find bases for the null space $N(A)$ and the column space $C(A)$. What is the nullity, $\operatorname{dim}(N(A)) ?$ What is the rank $\operatorname{dim}(C(A)) ?$

$$
\begin{aligned}
& \begin{array}{c}
-x_{1}+4 x_{2}=0 \\
3
\end{array} \\
& x_{1}=4 x_{2} \\
& {\left[\begin{array}{cc}
-1 & 4 \\
2 & -8
\end{array}\right] \longrightarrow \underset{\substack{ \\
\text { pivist } \\
\hat{p} \\
0 \\
0 \\
0}}{\left[\begin{array}{cc}
-1 & 4 \\
0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
& \left.N(A)=\left\{\left[\begin{array}{l}
4 x_{2} \\
x_{2}
\end{array}\right]\right\}^{\text {pict }}=\left\{\begin{aligned}
\text { the }
\end{aligned} x_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\} \text { Basis for } N(A)=\left\{\begin{array}{l}
4 \\
1 \\
1
\end{array}\right]\right\} \\
& C(A)=\operatorname{Span}\left(\left[\begin{array}{c}
-1 \\
2 \\
\underset{c}{1} \underset{\sim}{4}
\end{array}\right]\left[\begin{array}{c}
4 \\
-8
\end{array}\right]\right)=\operatorname{Span}\left(\left[\begin{array}{c}
-1 \\
2
\end{array}\right]\right) \\
& \text { linerky dependant Basis for } C(A)=\left\{\left[\begin{array}{c}
-1 \\
2
\end{array}\right]\right\} \\
& 1 \text { dimensional }
\end{aligned}
$$

Basis for $N(A)(4 \mathrm{pts})$:

Problem 4 (8 pts): In each sentence, circle the best choice among the choices in parentheses.

1. Suppose $v_{1}, v_{2}, \ldots, v_{6}$ are vectors in \mathbb{R}^{4}.
(a) Those six vectors (do) / (do not) / (might not) $\operatorname{span} \mathbb{R}^{4}$.
(b) Those six vectors (are) /(are not) / (might not be) linearly independent.
(c) Those six vectors (are) /(are not)/(might not be) a basis for \mathbb{R}^{4}.
2. Choose true or false for the following statements.
(a) Every subspace contains the zero vector.

(b) A basis is a spanning set that is as large as possible.

(c) The columns of an invertible $n \times n$ matrix form a basis for \mathbb{R}^{n}

(d) A basis is a linearly independent set that is as large as possible.

(e) A single nonzero vector v_{1} by itself is linearly independent.

Problem 5 (8 pts):

1. (4 pts) If A is a 3×3 matrix with three column vectors c_{1}, c_{2}, c_{3} which are orthogonal to each other such that $\left\|c_{1}\right\|=1,\left\|c_{2}\right\|=2$, and $\left\|c_{3}\right\|=3$, what is $A^{T} A$?

$$
\begin{aligned}
& {\left[\begin{array}{l}
-c_{1}^{\top}- \\
-c_{2}^{\top}- \\
-c_{3}^{T}-
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1 \\
c_{1} & c_{2} & c_{3} \\
1 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 9
\end{array}\right]} \\
& c_{1} \cdot c_{1}=\left\|c_{1}\right\|^{2}=1 \\
& c_{2} \cdot c_{2}=\left\|c_{2}\right\|^{2}=4 \\
& c_{3} \cdot c_{3}=\left\|c_{3}\right\|^{2}=9
\end{aligned}
$$

2. (4 pts) Calculate the projection $P_{\mathbf{w}} \mathbf{W}$ of the vector \boldsymbol{w} onto the line $L=\operatorname{Span}(\mathbb{W})$ where

$$
\begin{aligned}
& v=\left[\begin{array}{c}
1 \\
-1 \\
0 \\
-1
\end{array}\right], \quad w=\left[\begin{array}{c}
3 \\
2 \\
-2 \\
2
\end{array}\right] \\
& P_{W W}=\frac{V^{\top}}{\left[\begin{array}{c}
1 \\
-1 \\
0 \\
-1
\end{array}\right]\left[\begin{array}{llll}
1 & -1 & 0 & -1
\end{array}\right]\left[\begin{array}{c}
w \\
2 \\
-2 \\
2
\end{array}\right]}=\left[\begin{array}{ccc}
1-1 & 0 & -1
\end{array}\right]\left[\begin{array}{c}
1 \\
-1 \\
0 \\
-1
\end{array}\right] \\
& V=\left[\begin{array}{c}
1 \\
-1 \\
0 \\
-1
\end{array}\right]\left[\begin{array}{c}
{\left[\begin{array}{l}
-1
\end{array}\right]} \\
V^{\top}
\end{array}\right] \\
&=\left[\begin{array}{c}
1 \\
-1 \\
0 \\
-1
\end{array}\right] \\
& {\left[\begin{array}{c}
-1 / 3 \\
+1 / 3 \\
0 \\
-1 / 3
\end{array}\right] }
\end{aligned}
$$

Problem 6 (8 pts): Find an orthonormal basis for the subspace

$$
U=\operatorname{Span}\left(\begin{array}{c}
{\left[\begin{array}{c}
2 \\
0 \\
-2 \\
0 \\
1
\end{array}\right],}
\end{array} \frac{\left.\left[\begin{array}{c}
3 \\
1 \\
-1 \\
-1 \\
1
\end{array}\right]\right)}{\mathbf{V}_{\mathbf{1}}} \quad \underset{\mathbf{V}_{\mathbf{2}}}{\left[\begin{array}{c}
\\
{\left[\begin{array}{l}
2
\end{array}\right.} \\
\hline
\end{array}\right]}\right.
$$

$\left\|v_{1}\right\|=\sqrt{2^{2}+0^{2}+(-2)^{2}+0^{2}+(1)^{2}}=\sqrt{9}=3$

$$
\begin{aligned}
& e_{1}=\frac{1}{3} v_{1}=\left[\begin{array}{c}
2 / 3 \\
0 \\
-2 / 3 \\
0 \\
1 / 3
\end{array}\right] \\
& u_{2}=v_{2}-P_{e_{1}} v_{2}=\left[\begin{array}{c}
3 \\
1 \\
-1 \\
-1 \\
1
\end{array}\right]-\underbrace{(\underbrace{\left(e_{1} \cdot v_{2}\right)}_{1}}_{3} \underbrace{2+\frac{2}{3}+\frac{1}{3}}_{3}
\end{aligned}\left[\begin{array}{c}
2 / 3 \\
0 \\
-2 / 3 \\
0 \\
1 / 3
\end{array}\right]=\left[\begin{array}{c}
3 \\
1 \\
-1 \\
-1 \\
1
\end{array}\right]-\left[\begin{array}{c}
2 \\
0 \\
-2 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
1 \\
1 \\
-1 \\
0
\end{array}\right] .
$$

$$
\left\|u_{2}\right\|=\sqrt{1^{2}+1^{2}+1^{2}+(-1)^{2}+0^{2}}=\sqrt{4}=2
$$

$$
e_{2}=\left[\begin{array}{c}
1 / 2 \\
1 / 2 \\
1 / 2 \\
-1 / 2 \\
0
\end{array}\right]
$$

$$
\text { ON Bass: : } \left.\left\{\left[\begin{array}{c}
2 / 3 \\
0 \\
-2 / 3 \\
0 \\
1 / 3
\end{array}\right], \begin{array}{c}
1 / 2 \\
1 / 2 \\
1 / 2 \\
-1 / 2 \\
0
\end{array}\right]\right\}
$$

Problem 7 (8 pts):
(a) (4pts) Calculate the determinant of the matrix

$$
\begin{aligned}
& A=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 5 \\
1 & 1 & 0 & 1 \\
1 & 2 & 1 & 1
\end{array}\right] \\
& \operatorname{det} A=\operatorname{det}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 4 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]=-\operatorname{det}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 4
\end{array}\right] \\
&=-1 \cdot 1 \cdot(-1) \cdot 4 \\
&=4
\end{aligned}
$$

(b) (4pts) Determine a value of k which ensures the following matrix has $\operatorname{det}(A)=0$:

$$
A=\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 5 \\
5 & 3 & k & 3
\end{array}\right]
$$

If $K=5$ the first + third columns are the same
So the columns one linearly dependent so $\operatorname{det}(A)=0$.
or by cofrachaperations
deft

$$
=-(k-5) \cdot 5
$$

So $-5(k-5)=0$ when $k=5$

