Practice 1 for Midterm 1

Math 22A, Fall 2019

Name:

Student ID:

You do not need to simplify numerical expressions for your final answers (e.g. you can write $3-\frac{3}{4}$ instead of simplifying to $\frac{9}{4}$.)

Fill in all the blanks with your answers.

Problem 1: Calculate the vector given by the following linear combination

$$
2\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]+3\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]
$$

Answer: \qquad

All linear combinations of

$$
\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right], \text { and }\left[\begin{array}{c}
-2 \\
14 \\
4
\end{array}\right] \text { fill: }
$$

A. A Line
B. A Plane
C. A Point
D. Three-dimensional space

Answer: \qquad

All linear combinations of

$$
\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
-1 \\
-2 \\
-1
\end{array}\right], \text { and }\left[\begin{array}{l}
3 \\
6 \\
3
\end{array}\right] \text { fill: }
$$

A. A Line
B. A Plane
C. A Point
D. Three-dimensional space

Answer: \qquad

Problem 2: Determine whether the following vectors are perpendicular, parallel, or neither:

$$
\left[\begin{array}{c}
3 \\
0 \\
-1
\end{array}\right] \text { and }\left[\begin{array}{c}
-6 \\
0 \\
2
\end{array}\right]
$$

A. Perpendicular
B. Parallel
C. Neither

Answer: \qquad

$$
\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right] \text { and }\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right]
$$

A. Perpendicular
B. Parallel
C. Neither

Answer: \qquad
If θ is the angle between the following two vectors, calculate $\cos (\theta)$:

$$
\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right] \text { and }\left[\begin{array}{c}
1 \\
-2 \\
2
\end{array}\right]
$$

$\cos (\theta)$:
Multiply the following matrices with vectors, or say "impossible" if they cannot be multiplied.

$$
\left[\begin{array}{ccc}
-1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
4 \\
1 \\
-2
\end{array}\right]
$$

Answer: \qquad

$$
\left[\begin{array}{cc}
1 & 3 \\
2 & 1 \\
0 & -1
\end{array}\right]\left[\begin{array}{c}
3 \\
1 \\
-2
\end{array}\right]
$$

Answer: \qquad

Problem 3: Find a matrix filling in the blanks which switches the 2nd and 3rd rows:

$$
\left[\begin{array}{lll}
- & - & - \\
- & - & -
\end{array}\right]\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
g & h & i \\
d & e & f
\end{array}\right]
$$

Write out the following system of equations in matrix form $A x=b$:

$$
\begin{gathered}
\begin{array}{r}
x_{1}-2 x_{2}+x_{3}=1 \\
x_{1}-2 x_{2}+2 x_{3}=2 \\
4 x_{2}-2 x_{3}=3
\end{array} \\
{\left[\begin{array}{lll}
- & - & - \\
- & - & -
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
- \\
-
\end{array}\right]}
\end{gathered}
$$

Perform one row operation on both sides to modify the matrix equation so that the entries of the matrix in the $1^{s t}$ column in the $2^{\text {nd }}$ and $3^{\text {rd }}$ rows are both 0 and record the result:

$$
\left[\begin{array}{lll}
\overline{0} & - & - \\
0 & - & -
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
- \\
-
\end{array}\right]
$$

Perform another row operation on both sides to modify the matrix equation so that the entries of the matrix below the diagonal are all 0 and record the result:

$$
\left[\begin{array}{lll}
\overline{0} & - & - \\
0 & \overline{0} & -
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
- \\
-
\end{array}\right]
$$

Does the system of equations have
A. One solution
B. Infinitely many solutions
C. No solutions

Answer: \qquad

Problem 4: State whether or not the following matrices have an inverse or not:

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 2
\end{array}\right]
$$

A. Has an inverse
B. No inverse

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]
$$

Answer: \qquad
A. Has an inverse
B. No inverse

Calculate A^{-1} if A is the matrix

$$
A=\left[\begin{array}{cc}
-1 & 2 \\
2 & 1
\end{array}\right]
$$

Answer: \qquad

Problem 5: Determine whether there is one solution, no solutions, or infinitely many solutions to $A x=b$ if $A=L U$ where

$$
L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right], U=\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right], \quad \text { and } b=\left[\begin{array}{c}
-1 \\
3 \\
2
\end{array}\right]
$$

A. One solution
B. Infinitely many solutions
C. No solutions

Solve $A x=b$ if $A=L U$ where

$$
L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right], U=\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & -1 & 0 \\
0 & 0 & 3
\end{array}\right], \quad \text { and } b=\left[\begin{array}{l}
2 \\
2 \\
1
\end{array}\right]
$$

