Practice 2 for Midterm 1

Math 22A, Fall 2019

Name:

Student ID:

You do not need to simplify numerical expressions for your final answers (e.g. you can write $3-\frac{3}{4}$ instead of simplifying to $\frac{9}{4}$.)

Problem 1:Calculate the vector given by the following linear combination

$$
c\left[\begin{array}{l}
1 \\
3
\end{array}\right]+d\left[\begin{array}{l}
-2 \\
-6
\end{array}\right]
$$

Answer:
All linear combinations of

$$
\left[\begin{array}{l}
1 \\
3
\end{array}\right] \text { and }\left[\begin{array}{l}
-2 \\
-6
\end{array}\right] \text { fill: }
$$

A. A Line
B. A Point
C. Two-dimensional space

Answer: \qquad

All linear combinations of

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right] \text { and }\left[\begin{array}{l}
3 \\
0
\end{array}\right] \text { fill: }
$$

A. A Line
B. A Point
C. Two-dimensional space

Answer: \qquad

Problem 2: Calculate the dot product of the following two vectors:

$$
\left[\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right] \text { and }\left[\begin{array}{c}
1 \\
-2 \\
-1
\end{array}\right]
$$

Answer:

\qquad

Fill in the blank:
If u and v are vectors and their dot product $u \cdot v=0$, then u and v are \qquad .

Answer: \qquad

Is the angle between these two vectors

$$
\left[\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right] \text { and }\left[\begin{array}{c}
1 \\
-2 \\
-1
\end{array}\right]
$$

A. Less than 90°
B. Equal to 90°
C. Greater than 90° and less than 180°
D. Equal to 180°.

Answer: \qquad

Calculate the length of the vector

$$
\left[\begin{array}{c}
3 \\
1 \\
-2
\end{array}\right]
$$

Length:

\qquad
Which matrix multiplications are possible? (choose all that apply)
A. $\left[\begin{array}{lll}1 & 1 & 2 \\ 0 & 1 & 1\end{array}\right]\left[\begin{array}{c}-1 \\ 3 \\ -2\end{array}\right]$
B. $\left[\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right]\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]$
C. $\left[\begin{array}{cc}1 & 2 \\ 0 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{l}3 \\ 1\end{array}\right]$

Answer: \qquad

Problem 3: Write out the following system of equations in matrix form $A x=b$:

$$
\begin{gathered}
2 x_{1}-x_{2} \\
+x_{2}+3 x_{3}=2 \\
4 x_{1}-x_{2}+3 x_{3}=0
\end{gathered}
$$

Which matrix E will do: replace the $3^{\text {rd }}$ row by the ($3^{r d}$ row) $-2\left(1^{\text {st }}\right.$ row) when multiplying $E A$?

$$
E=\left[\begin{array}{lll}
- & - & - \\
- & - & - \\
- & - & -
\end{array}\right]
$$

What is the result of multiplying both sides of the equation above by $E(E A x=E b)$? (Do what E does to both sides.)

$$
\left[\begin{array}{lll}
- & - & - \\
- & - & - \\
- & - & -
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
- \\
-
\end{array}\right]
$$

Perform another row operation on both sides to change the resulting matrix to have all 0's below the diagonal. What is the result?

$$
\left[\begin{array}{lll}
- & - & - \\
- & - & - \\
- & - & -
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
- \\
-
\end{array}\right]
$$

Which matrix F did you use to do that row operation?

$$
F=\left[\begin{array}{lll}
- & - & - \\
- & - & - \\
- & - & -
\end{array}\right]
$$

Does the system of equations have
A. One solution
B. Infinitely many solutions
C. No solutions

Answer: \qquad

Problem 4: State whether or not the following matrices have an inverse or not:

$$
\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

A. Has an inverse
B. No inverse

$$
\left[\begin{array}{ll}
2 & 1 \\
0 & 0
\end{array}\right]
$$

A. Has an inverse
B. No inverse

Calculate A^{-1} if A is the matrix

$$
A=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & -1 & 0 \\
2 & 0 & 1
\end{array}\right]
$$

\qquad

Problem 5: Solve for the vector x :
Solve $A x=b$ if

$$
A=\left[\begin{array}{ccc}
-17 & -7 & 4 \\
5 & 2 & -1 \\
-3 & -1 & 1
\end{array}\right], b=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad \text { and } A^{-1}=\left[\begin{array}{ccc}
1 & 3 & -1 \\
-2 & -5 & 3 \\
1 & 4 & 1
\end{array}\right]
$$

Answer:

\qquad
Find the line of solutions solving $A x=b$ if

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
2 & 2 & 2
\end{array}\right], \quad \text { and } b=\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]
$$

Answer: $\left[\begin{array}{c}0 \\ - \\ -\end{array}\right]+t\left[\begin{array}{c}- \\ 1\end{array}\right]$

