Practice 2 for Midterm 1

Math 22A, Fall 2019

Student ID:

You do not need to simplify numerical expressions for your final answers (e.g. you can write $3-\frac{3}{4}$ instead of simplifying to $\frac{9}{4}$.)

Problem 1: Calculate the vector given by the following linear combination

$$
c\left[\begin{array}{l}
1 \\
3
\end{array}\right]+d\left[\begin{array}{l}
-2 \\
-6
\end{array}\right]
$$

Answer: $\left[\begin{array}{c}c-2 d \\ 3 c-6 d\end{array}\right]$

All linear combinations of

$$
\left[\begin{array}{l}
1 \\
3
\end{array}\right] \text { and }\left[\begin{array}{l}
-2 \\
-6
\end{array}\right] \text { fill: }
$$

$x_{1}\left[\begin{array}{l}1 \\ 3\end{array}\right]+x_{2}\left[\begin{array}{l}-2 \\ -6\end{array}\right]=x_{1}\left[\begin{array}{l}1 \\ 3\end{array}\right]-2 x_{2}\left[\begin{array}{l}1 \\ 3\end{array}\right]=\left(x_{1}-2 x_{2}\right)\left[\begin{array}{l}1 \\ 3\end{array}\right]$, which is a line.
A. A Line
B. A Point
C. Two-dimensional space
Answer: \qquad

All linear combinations of

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right] \text { and }\left[\begin{array}{l}
3 \\
0
\end{array}\right] \text { fill: }
$$

These two vectors are linearly independent, hence form a plane.
A. A Line
B. A Point
C. Two-dimensional space
Answer: \qquad

Problem 2: Calculate the dot product of the following two vectors:

$$
\begin{gathered}
{\left[\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right] \text { and }\left[\begin{array}{c}
1 \\
-2 \\
-1
\end{array}\right]} \\
{\left[\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right] \cdot\left[\begin{array}{c}
1 \\
-2 \\
-1
\end{array}\right]=2 \times 1+2 \times(-2)+(-1) \times(-1)=-1}
\end{gathered}
$$

Answer: \qquad

Fill in the blank:
If u and v are vectors and their dot product $u \cdot v=0$, then u and v are \qquad .

Answer: \qquad

Is the angle between these two vectors

$$
\left[\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right] \text { and }\left[\begin{array}{c}
1 \\
-2 \\
-1
\end{array}\right]
$$

The dot product of these two vectors is negative, -1 from previous calculation, hence the angle between them is greater than 90° and less than 180°.
A. Less than 90°
C. Greater than 90° and less than 180°
B. Equal to 90°
D. Equal to 180°.

Answer: \qquad

Calculate the length of the vector

$$
\left[\begin{array}{c}
3 \\
1 \\
-2
\end{array}\right]
$$

$$
\text { length }=\sqrt{3^{2}+1^{2}+(-2)^{2}}=\sqrt{14}
$$

Length: $\sqrt{14}$
Which matrix multiplications are possible? (choose all that apply)
A. $\left[\begin{array}{lll}1 & 1 & 2 \\ 0 & 1 & 1\end{array}\right]\left[\begin{array}{c}-1 \\ 3 \\ -2\end{array}\right]$
B. $\left[\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right]\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]$
C. $\left[\begin{array}{cc}1 & 2 \\ 0 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{l}3 \\ 1\end{array}\right]$
\# columns of the left matrix= \# rows of the right matrix
Answer: \qquad

Problem 3: Write out the following system of equations in matrix form $A x=b$:

$$
\begin{aligned}
2 x_{1}-x_{2} & =1 \\
+x_{2}+3 x_{3} & =2 \\
4 x_{1}-x_{2}+3 x_{3} & =0
\end{aligned}
$$

Which matrix E will do: replace the $3^{\text {rd }}$ row by the ($3^{\text {rd }}$ row $)-2\left(1^{\text {st }}\right.$ row) when multiplying $E A$?

$$
E=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right]
$$

What is the result of multiplying both sides of the equation above by $E(E A x=E b)$? (Do what E does to both sides.)

$$
\left[\begin{array}{ccc}
2 & -1 & 0 \\
0 & 1 & 3 \\
0 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
1 \\
2 \\
-2
\end{array}\right]
$$

Perform another row operation on both sides to change the resulting matrix to have all 0's below the diagonal. What is the result?

$$
\left[\begin{array}{ccc}
2 & -1 & 0 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
1 \\
2 \\
-4
\end{array}\right]
$$

Which matrix F did you use to do that row operation?

$$
F=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]
$$

Does the system of equations have
A. One solution
B. Infinitely many solutions
C. No solutions

Answer: \qquad

Problem 4: State whether or not the following matrices have an inverse or not:

$$
\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

This matrix is not square and therefore cannot have an inverse.
A. Has an inverse
B. No inverse
Answer: \qquad

$$
\left[\begin{array}{ll}
2 & 1 \\
0 & 0
\end{array}\right]
$$

This matrix is in upper triangular form and has a 0 on the diagonal. Therefore it has no inverse.
A. Has an inverse
B. No inverse
Answer: \qquad

Calculate A^{-1} if A is the matrix

$$
\begin{array}{rl}
& A=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & -1 & 0 \\
2 & 0 & 1
\end{array}\right] \\
{\left[\begin{array}{cccccc}
-1 & 0 & 1 & 1 & 0 & 0 \\
0 & -1 & 0 & 0 & 1 & 0 \\
2 & 0 & 1 & 0 & 0 & 1
\end{array}\right]} & \longrightarrow\left[\begin{array}{cccccc}
1 & 0 & -1 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 & 0 \\
2 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \longrightarrow\left[\begin{array}{ccccc}
1 & 0 & -1 & -1 & 0
\end{array} 0\right. \\
0 & 1 \\
0 & 0 \\
-1 & 0 \\
0 & 0 \\
3 & 2
\end{array} 0
$$

Answer: $\left[\begin{array}{ccc}-\frac{1}{3} & 0 & \frac{1}{3} \\ 0 & -1 & 0 \\ \frac{2}{3} & 0 & \frac{1}{3}\end{array}\right]$

Problem 5: Solve for the vector x :
Solve $A x=b$ if

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
-17 & -7 & 4 \\
5 & 2 & -1 \\
-3 & -1 & 1
\end{array}\right], b=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \text { and } A^{-1}=\left[\begin{array}{ccc}
1 & 3 & -1 \\
-2 & -5 & 3 \\
1 & 4 & 1
\end{array}\right] \\
x=A^{-1} b & =\left[\begin{array}{ccc}
1 & 3 & -1 \\
-2 & -5 & 3 \\
1 & 4 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
3 \\
-4 \\
6
\end{array}\right]
\end{aligned}
$$

Answer: $\quad\left[\begin{array}{c}3 \\ -4 \\ 6\end{array}\right]$

Find the line of solutions solving $A x=b$ if

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
2 & 2 & 2
\end{array}\right], \quad \text { and } b=\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]
$$

Let $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$, doing row elimination for $\left[\begin{array}{llll}1 & 1 & 1 & 2 \\ 0 & 1 & 2 & 3 \\ 2 & 2 & 2 & 4\end{array}\right]$ we get $\left[\begin{array}{llll}1 & 1 & 1 & 2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0\end{array}\right]$.
Expressing in terms of $x_{1} x_{2} x_{3}$ we get

$$
\left\{\begin{array} { r l }
{ x _ { 1 } + x _ { 2 } + x _ { 3 } } & { = 2 } \\
{ x _ { 2 } + 2 x _ { 3 } } & { = 3 }
\end{array} \Longrightarrow \left\{\begin{array}{l}
x_{1}=-1+x_{3} \\
x_{2}=3-2 x_{3}
\end{array}\right.\right.
$$

Thus,

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{lllll}
x_{1} & = & -1 & + & x_{3} \\
x_{2} & = & 3 & - & 2 x_{3} \\
& & & x_{3}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
3 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]
$$

Since x_{3} is a free variable, by setting $x_{3}=t+1$, we get

$$
\begin{aligned}
x=\left[\begin{array}{c}
-1 \\
3 \\
0
\end{array}\right]+(t+1)\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]= & {\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]+t\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] } \\
& \text { Answer: }\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]+t\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]
\end{aligned}
$$

