Practice Midterm 2

Math 22A, Fall 2019

Name:

Student ID:

You do not need to simplify numerical expressions for your final answers (e.g. you can write $3-\frac{3}{4}$ instead of simplifying to $\frac{9}{4}$.)

$$
\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|\|\mathbf{w}\|}=\cos \theta
$$

The formula for the projection matrix is

$$
P=A\left(A^{T} A\right)^{-1} A^{T}
$$

Problem 1 ($\mathbf{p t s}$): Determine whether each of the following sets is a subspace of P_{2} the polynomials of degree 2 . If it is a subspace, prove it is closed under scalar multiplication and addition. If it is not a subspace give an example showing it is not closed under one of the two operations.
(a) The set of polynomials of the form $p(t)=a t^{2}$ where a is in \mathbb{R}.
(b) The set of polynomials of the form $p(t)=t^{2}+a$ where a is in \mathbb{R}.

Problem 2 (pts):

(a) Find the value of k for which the matrix

$$
A=\left[\begin{array}{ccc}
1 & 0 & 4 \\
0 & -1 & 2 \\
1 & 1 & k
\end{array}\right]
$$

has rank 2.
(b) Give an example of a matrix whose column space contains $(1,2,5)$ and $(0,4,1)$ and whose null space contains $(1,-1,2)$.

Problem 3 (pts): State whether the following vectors are linearly independent or dependent. If they are linearly independent, prove it. If they are linearly dependent, give coefficients $c_{1}, c_{2}, c_{3}, c_{4}$ which are not all zero such that $c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}+c_{4} v_{4}=0$.

$$
v_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad v_{4}=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]
$$

Problem 4 (pts): Find bases for the null space $N(A)$ and the column space $C(A)$.

$$
A=\left[\begin{array}{cccc}
1 & 3 & 0 & -1 \\
0 & 0 & 1 & 2 \\
1 & 3 & 0 & 3
\end{array}\right]
$$

Problem 5 (pts):

1. Amongst the following subspaces, specify all pairs which are orthogonal to each other.

$$
\begin{aligned}
& U_{1}=\operatorname{Span}\left(\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right), \quad U_{2}=\operatorname{Span}\left(\left[\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right],\left[\begin{array}{l}
0 \\
3 \\
0
\end{array}\right]\right), \quad U_{3}=\operatorname{Span}\left(\left[\begin{array}{l}
0 \\
3 \\
0
\end{array}\right]\right), \\
& U_{4}=\operatorname{Span}\left(\left[\begin{array}{l}
0 \\
3 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
0 \\
2
\end{array}\right]\right), \quad U_{5}=\operatorname{Span}\left(\left[\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right],\left[\begin{array}{c}
-2 \\
0 \\
2
\end{array}\right]\right), \quad U_{6}=\operatorname{Span}\left(\left[\begin{array}{c}
-2 \\
0 \\
2
\end{array}\right]\right)
\end{aligned}
$$

2. Calculate the projection matrix which projects vectors onto the following subspace

$$
U=\operatorname{Span}\left(\left[\begin{array}{c}
\frac{2}{3} \\
\frac{1}{3} \\
0 \\
\frac{2}{3}
\end{array}\right], \quad\left[\begin{array}{c}
\frac{-1}{3} \\
\frac{2}{3} \\
\frac{2}{3} \\
0
\end{array}\right]\right)
$$

Problem 6 (pts): Let

$$
A=\left[\begin{array}{ccc}
3 & 1 & 3 \\
0 & 2 & 6 \\
4 & -1 & -3
\end{array}\right]
$$

Find an orthonormal basis for the column space of A.

Problem 7 (pts):

1. Answer whether each of the following statements is true or false:
(a) The determinant of $I+A$ is $1+\operatorname{det}(A)$.
(True) / (False)
(b) The determinant of $A B C$ is $\operatorname{det}(A) \operatorname{det}(B) \operatorname{det}(C)$.
(True) / (False)
(c) The determinant of $4 A$ is $4 \operatorname{det}(A)$.
(True) / (False)
2. Determine the value of k which ensures the following matrix has $\operatorname{det}(A)=5$:

$$
A=\left[\begin{array}{llll}
1 & 1 & 2 & 2 \\
1 & 1 & 1 & 2 \\
1 & 2 & 2 & 2 \\
1 & 1 & 2 & k
\end{array}\right]
$$

