Practice Midterm 2

Math 22A, Fall 2019

Name: Solutions

Student ID:

You do not need to simplify numerical expressions for your final answers (e.g. you can write $3-\frac{3}{4}$ instead of simplifying to $\frac{9}{4}$.)

$$
\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\|\|\mathbf{w}\|}=\cos \theta
$$

The formula for the projection matrix is

$$
P=A\left(A^{T} A\right)^{-1} A^{T}
$$

Problem 1 (pts): Determine whether each of the following sets is a subspace of P_{2} the polynomials of degree 2. If it is a subspace, prove it is closed under scalar multiplication and addition. If it is not a subspace give an example showing it is not closed under one of the two operations.
(a) The set of polynomials of the form $p(t)=a t^{2}$ where a is in \mathbb{R}.

Closed under scalar multiplication:

$$
\text { If } p(t)=a t^{2} \text { then } c p(t)=c\left(a t^{2}\right)=(c \cdot a) t^{2}
$$ $c \cdot a$ is in \mathbb{R} so $c p(t)$ has the $n i g h t$ form.

Closed under addition:
If $p_{1}(t)=a_{1} t^{2}$ and $p_{2}(t)=a_{2} t^{2}$
then $p_{1}(t)+p_{2}(t)=a_{1} t^{2}+a_{2} t^{2}=\left(a_{1}+a_{2}\right) t^{2}$
since $a_{1}+a_{2}$ is in $\mathbb{R} \quad p_{1}(t)+p_{2}(t)$ has the night form.
Thus this set is a subspace
(b) The set of polynomials of the form $p(t)=t^{2}+a$ where a is in \mathbb{R}.

This set is not a subspace because it is not closed under Scalormultiplication

For example $p(t)=t^{2}+1$ has the required form but $2 \cdot p(t)=2 t^{2}+2$ does not have the required form should be a I

Problem 2 (pts):
(a) Find the value of k for which the matrix

$$
A=\left[\begin{array}{ccc}
1 & 0 & 4 \\
0 & -1 & 2 \\
1 & 1 & k
\end{array}\right]
$$

has rank 2.

$$
4\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]-2\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
2 \\
2
\end{array}\right]
$$

So if $K=2$ the 3 columns will be linearly dependent but $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]$ are linearly independent

$$
\text { Since } \quad c_{1}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \Leftrightarrow \begin{gathered}
c_{1}=0 \\
-c_{2}=0 \\
c_{1}+c_{2}=0
\end{gathered} \Leftrightarrow c_{1}=c_{2}=0 \text {. }
$$

(b) Give an example of a matrix whose column space contains $(1,2,5)$ and $(0,4,1)$ and whose null space contains $(1,-1,2)$ in null
in colum Space

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 0 & a \\
2 & 4 & b \\
5 & 1 & c
\end{array}\right]\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{c}
1+2 a \\
-2+2 b \\
4+2 c
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \quad \begin{array}{l}
a=-1 / 2 \\
b=1 \\
c=-2
\end{array}}
\end{aligned}
$$

Problem 3 (pts): State whether the following vectors are linearly independent or dependent. If they are linearly independent, prove it. If they are linearly dependent, give coefficients $c_{1}, c_{2}, c_{3}, c_{4}$ such that
$c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}+c_{4} v_{4}=0$.

$$
v_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad v_{4}=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]
$$

These vectors ane linearly dependent.

$$
C_{1}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+C_{2}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+C_{3}\left[\begin{array}{l}
0 \\
1 \\
6
\end{array}\right]+C_{4}\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
c_{1}+c_{2}+c_{4}=0 \\
c_{1}+c_{3}+2 c_{4}=0 \\
c_{2}=0
\end{array}\right. \\
& \left\{\begin{array}{l}
c_{1}=-c_{4} \\
c_{3}=-c_{1}-2 c_{4}=-c_{4} \\
c_{2}=0
\end{array}\right.
\end{aligned}
$$

c_{a} is a free choice
Pick $c_{4}=1$ then $c_{3}=-1 \quad c_{2}=0 \quad c_{1}=-1$

$$
-1\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+0\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+(-1)\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+(1)\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Problem 4 (pts): Find bases for the null space $N(A)$ and the column space $C(A)$.

$$
C(A)=\operatorname{Sen}\left(\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
2 \\
3
\end{array}\right]\right)
$$

Since there are 3 pivots a basis for $C(A)$ should have 3 vectors

$$
\text { Basis for } C(A):\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
2 \\
3
\end{array}\right]\right\}
$$

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
1 & 3 & 0 & -1 \\
0 & 0 & 1 & 2 \\
1 & 3 & 0 & 3
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
{[1)} & 3 & 0 & -1 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & (4)
\end{array}\right] \rightarrow \underset{\left(\begin{array}{cccc}
10 & 3 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 4
\end{array}\right]}{\substack{4 \\
\text { free }}} \\
& {\left[\begin{array}{llll}
1 & 3 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \leftrightarrow \begin{aligned}
x_{1}+3 x_{2} & =0 \\
x_{3} & =0 \\
4 x_{4} & =0
\end{aligned}} \\
& \Leftrightarrow \quad x_{1}=-3 x_{2} \\
& N(A)=\left\{\left[\begin{array}{c}
-3 x_{2} \\
x_{2} \\
0 \\
0
\end{array}\right]\right\}=\left\{x_{2}\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]\right\} \quad \begin{array}{c}
x_{1}=0 \\
\text { basis for } N(A):\left\{\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right]\right\}
\end{array} \\
& C(A)=\operatorname{Span}\left(\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
3 \\
0 \\
3
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
2 \\
3
\end{array}\right]\right) \\
& \text { linearly dependent bic }(-3)\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+(1) \underset{\uparrow}{\left[\begin{array}{l}
3 \\
0 \\
3
\end{array}\right]}+(0)\left[\begin{array}{c}
0 \\
1 \\
0
\end{array}\right]+0\left[\begin{array}{c}
-1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& \text { remove }
\end{aligned}
$$

Problem 5 (pts):

1. Amongst the following subspaces, specify all pairs which are orthogonal to each other.

$$
\begin{aligned}
& U_{1}=\operatorname{Span}\left(\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right), \quad U_{2}=\operatorname{Span}\left(\left[\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right],\left[\begin{array}{l}
0 \\
3 \\
0
\end{array}\right]\right), \quad U_{3}=\operatorname{Span}\left(\left[\begin{array}{l}
0 \\
3 \\
0
\end{array}\right]\right), \\
& U_{4}=\operatorname{Span}\left(\left[\begin{array}{l}
0 \\
3 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
0 \\
2
\end{array}\right]\right), \quad U_{5}=\operatorname{Span}\left(\left[\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right],\left[\begin{array}{c}
-2 \\
0 \\
2
\end{array}\right]\right), \quad U_{6}=\operatorname{Span}\left(\left[\begin{array}{c}
-2 \\
0 \\
2
\end{array}\right]\right)
\end{aligned}
$$

$\underline{U_{1}}$ and u_{2}, u_{1} and u_{3}, u_{1} and u_{5}, u_{1} and u_{6}
U_{3} and U_{6}, U_{4} and U_{6}
2. Calculate the projection matrix which projects vectors onto the following subspace

$$
\begin{aligned}
& U=\operatorname{Span}\left(\left[\begin{array}{c}
2 / 3 \\
1 / 3 \\
0 \\
2 / 3
\end{array}\right],\left[\begin{array}{c}
-1 / 3 \\
2 / 3 \\
2 / 3 \\
0
\end{array}\right]\right) \\
& A=\left[\begin{array}{cc}
2 / 3 & -1 / 3 \\
1 / 3 & 2 / 3 \\
0 & 2 / 3 \\
2 / 3 & 0
\end{array}\right] \\
& P=A\left(A^{\top} A\right)^{-1} A^{\top}=A A^{\top}=\left[\begin{array}{cc}
2 / 3 & -1 / 3 \\
1 / 3 & 2 / 3 \\
0 & 2 / 3 \\
2 / 3 & 0
\end{array}\right]\left[\begin{array}{cccc}
2 / 3 & 1 / 3 & 0 & 2 / 3 \\
-1 / 3 & 2 / 3 & 2 / 3 & 0
\end{array}\right] \\
& =\left[\begin{array}{cccc}
5 / 9 & 0 & -2 / 9 & 4 / 9 \\
0 & 5 / 9 & 4 / 9 & 2 / 9 \\
-2 / 9 & 4 / 9 & 4 / 9 & 0 \\
4 / 9 & 2 / 9 & 0 & 4 / 9
\end{array}\right]
\end{aligned}
$$

Problem 6 (pts): Let

$$
A=\left[\begin{array}{ccc}
3 & 1 & 3 \\
0 & 2 & 6 \\
4 & -1 & -3
\end{array}\right]
$$

Find an orthonormal basis for the column space of A.
be cause $\left[\begin{array}{c}3 \\ 6 \\ -3\end{array}\right]=3\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right] \begin{gathered}\text { so } \\ \text { linearly } \\ \text { dependent }\end{gathered}$

Problem 7 (pts):

1. Answer whether each of the following statements is true or false:
(a) The determinant of $I+A$ is $1+\operatorname{det}(A)$.
(b) The determinant of $A B C$ is $\operatorname{det}(A) \operatorname{det}(B) \operatorname{det}(C)$.
(c) The determinant of $4 A$ is $4 \operatorname{det}(A)$.
(True) /(False)
(True) / (False)
(True)
2. Determine the value of k which ensures the following matrix has $\operatorname{det}(A)=5$:

$$
\begin{aligned}
& A=\left[\begin{array}{llll}
1 & 1 & 2 & 2 \\
1 & 1 & 1 & 2 \\
1 & 2 & 2 & 2 \\
1 & 1 & 2 & k
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 1 & 2 & 2 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & k-2
\end{array}\right] \\
& \operatorname{det}(A)=-\operatorname{det}\left(\left[\begin{array}{llll}
1 & 1 & 2 & 2 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & k-2
\end{array}\right]\right)=-(-1)(k-2)=k-2 \\
& \text { So } \operatorname{det}(A)=5 \text { when } k-2=5 \\
& \text { So } k=7
\end{aligned}
$$

