Practice Midterm 2

Math 22A, Fall 2019

Name: SO\\L\'iOf\S

Student ID:

You do not need to simplify numerical expressions for your final answers (e.g. you can
write 3 — 2 instead of simplifying to 3.)
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The formula for the projection matrix is

P = A(ATA) AT



Problem 1 ( pts): Determine whether each of the following sets is a subspace of P,
the polynomials of degree 2. If it is a subspace, prove it is closed under scalar multiplication
and addition. If it is not a subspace give an example showing it is not closed under one of

the two operations.

(a) The set of polynomials of the form p(t) = at? where a is in R.
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Problem 2 ( pts):

(a) Find the value of k for which the matrix
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has rank 2.

(b) Give an example of a matrix whose column space contains (1,2,5) and (0,4,1) and
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Problem 3 ( pts): State whether the following vectors are linearly independent or
dependent. If they are linearly independent, prove it. If they are linearly dependent, give

coefficients ¢, ¢z, c3, ¢4 such that
C1Uq + CoUg + C3U3 + C4Uq = 0.
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Problem 4 ( pts): Find bases for the null space N(A) and the column space C(A). g“ﬁg \‘
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Problem 5 ( pts):

1. Amongst the following subspaces, specify all pairs which are orthogonal to each other.
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2. Calculate the projection matrix which projects vectors onto the following subspace
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Problem 6 ( pts): Let
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Find an orthonormal basis for the column space of A.
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Problem 7 ( pts):

1. Answer whether each of the following statements is true or false:

(a) The determinant of I + A is 1 + det(A). (True) /\(False)
(b) The determinant of ABC is det(A) det(B) det(C). / (False)

(c) The determinant of 44 is 4 det(A). (True) / .

9 Determine the value of k which cnsures the following matrix has det(A) = 5:
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