MAT 022A MIDTERM 2 PRACTICE PROBLEMS

LAURA STARKSTON

- (1) Prove that the subset of R³ of vectors \$\begin{align*} x_1 \\ x_2 \\ x_3 \end{align*}\$ satisfying the equation \$3x_1 + x_3 = 0\$ is a subspace, by checking the two rules for a subspace hold.
 (2) Prove that the subset of R² of vectors \$\begin{align*} x_1 \\ x_2 \end{align*}\$ satisfying the equation \$x_1x_2 = 0\$ is NOT a subspace, by GIVING AN EXAMPLE where at least one of the two rules for \$\begin{align*} x_1 \\ x_2 \end{align*}\$.
- by GIVING AN EXAMPLE where at least one of the two rules for a subspace fails.
- (3) Prove that the subset of \mathbb{R}^3 of vectors $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ satisfying the equation $x_1 + 2x_2 + x_3 = 5$ is NOT a subspace, by GIVING AN EXAMPLE where at least one of the two rules for a subspace fails.
- (4) Prove that the subset of \mathbb{R}^3 of vectors $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ satisfying the equation $x_1 + x_2^2 = 0$ is NOT a subspace, by GIVING AN EXAMPLE where at least one of the two rules for a subspace fails.
- (5) Is the column space of the following matrix a point, a line, a plane, or three-dimensional space?

$$A = \left[\begin{array}{rrrr} 1 & 0 & -1 & 2 \\ 2 & 1 & -2 & 3 \\ -1 & 3 & 1 & -5 \end{array} \right]$$

- (6) Give an example of a matrix whose column space contains (1,2,5) and (0,4,1) and whose null space contains (1, -1, 2).
- (7) Give an example of a matrix whose null space contains (1,1,0) and (0,2,1).
- (8) Describe the nullspace of the matrix A as all linear combinations of a collection of two vectors (the answer should say what the two vectors are):

$$A = \left[\begin{array}{rrrr} 1 & -2 & 1 & 3 \\ 2 & -4 & 1 & 1 \end{array} \right]$$

(9) Describe the nullspace of the matrix A as all linear combinations of a collection of two vectors (the answer should say what the two vectors are):

$$A = \left[\begin{array}{rrrr} 0 & -1 & 2 & 3 \\ 1 & -3 & -1 & 2 \\ 1 & -4 & 1 & 5 \end{array} \right]$$

(10) Describe all solutions to the equation Ax = b when

$$A = \begin{bmatrix} 1 & 1 & -1 & -1 \\ 2 & 2 & 3 & 5 \\ 1 & 1 & 4 & 6 \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} 0 \\ 7 \\ 7 \end{bmatrix}$$

(11) Is the following vector b in the column space of the given matrix A?

$$b = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix} \quad \text{and} \quad A = \begin{bmatrix} 1 & -2 & 0 & -1 \\ 1 & -2 & 0 & 0 \\ 1 & -2 & 0 & 2 \end{bmatrix}$$

(12) Describe all solutions to the equation Ax = b when

$$A = \begin{bmatrix} 1 & 2 & -1 & 3 \\ 0 & 0 & 3 & 5 \\ 0 & 0 & 0 & -2 \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} 0 \\ 7 \\ 4 \end{bmatrix}$$

(13) State whether the following vectors are linearly independent or dependent. If they are linearly independent, prove it. If they are linearly dependent, give coefficients c_1, c_2 such that $c_1v_1 + c_2v_2 = 0$.

$$v_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 2 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 2 \\ 2 \\ 1 \\ 4 \end{bmatrix}$$

(14) State whether the following vectors are linearly independent or dependent. If they are linearly independent, prove it. If they are linearly dependent, give coefficients c_1, c_2, c_3 such that $c_1v_1 + c_2v_2 + c_3v_3 = 0$.

$$v_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$$

(15) State whether the following vectors are linearly independent or dependent. If they are linearly independent, prove it. If they are linearly dependent, give coefficients c_1, c_2, c_3 such that $c_1v_1 + c_2v_2 + c_3v_3 = 0$.

$$v_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 2 \\ 5 \\ 1 \end{bmatrix}, \quad v_3 = \begin{bmatrix} -1 \\ -13 \\ -2 \end{bmatrix}$$

(16) State whether the following vectors are linearly independent or dependent. If they are linearly independent, prove it. If they are linearly dependent, give coefficients c_1, c_2, c_3, c_4 such that $c_1v_1 + c_2v_2 + c_3v_3 + c_4v_4 = 0$.

$$v_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad v_4 = \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}$$

(17) State whether the following vectors are linearly independent or dependent. If they are linearly independent, prove it. If they are linearly dependent, give coefficients c_1, c_2, c_3 such that $c_1v_1 + c_2v_2 + c_3v_3 = 0$.

$$v_1 = \begin{bmatrix} 2 \\ 5 \\ 3 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \quad v_3 = \begin{bmatrix} -4 \\ -10 \\ -6 \end{bmatrix}$$

(18) Consider the matrix

$$A = \left[\begin{array}{rrrr} 1 & 1 & 1 & 1 \\ 2 & 2 & 3 & 1 \\ 0 & 0 & 1 & 1 \end{array} \right]$$

Find a basis for the column space C(A). Find a basis for the nullspace N(A). What is the dimension of C(A)? What is the dimension of N(A)? Check the rank nullity theorem holds in this case $\dim(N(A)) + \dim(C(A)) = 4$.

(19) Consider the matrix

$$A = \left[\begin{array}{rrrrr} 1 & -1 & 1 & -1 & 1 \\ -3 & 3 & -3 & 3 & -3 \end{array} \right]$$

Find a basis for the column space C(A). Find a basis for the nullspace N(A). What is the dimension of C(A)? What is the dimension of N(A)? Check the rank nullity theorem holds in this case $\dim(N(A)) + \dim(C(A)) = 5$.

(20) Consider the matrix

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} \right]$$

Find a basis for the column space C(A). Find a basis for the nullspace N(A). What is the dimension of C(A)? What is the dimension of N(A)? Check the rank nullity theorem holds in this case $\dim(N(A)) + \dim(C(A)) = 3$.

(21) Find a basis for the subspace U given by

$$U = \operatorname{Span}\left(\begin{bmatrix} 2\\1\\0 \end{bmatrix}, \begin{bmatrix} 4\\2\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right)$$

(22) Find a basis for the subspace U given by

$$U = \operatorname{Span}\left(\left[\begin{array}{c}1\\1\\1\end{array}\right], \quad \left[\begin{array}{c}4\\4\\4\end{array}\right], \quad \left[\begin{array}{c}0\\0\\0\end{array}\right], \quad \left[\begin{array}{c}3\\3\\3\end{array}\right]\right)$$

(23) Find a basis for the subspace U given by

$$U = \operatorname{Span}\left(\left[\begin{array}{c}1\\0\\1\end{array}\right], \quad \left[\begin{array}{c}-2\\4\\2\end{array}\right], \quad \left[\begin{array}{c}0\\4\\4\end{array}\right], \quad \left[\begin{array}{c}1\\4\\5\end{array}\right]\right)$$

- (24) If v_1, \dots, v_5 are 5 vectors in a subspace U, determine whether each statement is necessarily true or could sometimes (or always) be false. In cases where the statement is false, give an example showing it is false.
 - (a) U has dimension 5.
 - (b) U has dimension less than or equal to 5.
 - (c) U has dimension greater than or equal to 5.
 - (d) If $U = \text{Span}(v_1, \dots, v_5)$ then (v_1, \dots, v_5) are linearly independent.
 - (e) If $U = \operatorname{Span}(v_1, \dots, v_5)$ then (v_1, \dots, v_5) gives a basis for U.
 - (f) If $U = \text{Span}(v_1, \dots, v_5)$ then U has dimension less than or equal to 5.

- (g) If $U = \text{Span}(v_1, \dots, v_5)$ then U has dimension greater than or equal to 5.
- (h) If $U = \operatorname{Span}(v_1, \dots, v_5)$ then U has dimension exactly 5.
- (i) If (v_1, \dots, v_5) form a linearly independent list then $U = \operatorname{Span}(v_1, \dots, v_5)$.
- (j) If (v_1, \dots, v_5) form a linearly independent list then (v_1, \dots, v_5) gives a basis for U.
- (k) If (v_1, \dots, v_5) form a linearly independent list then U has dimension less than or equal to 5.
- (1) If (v_1, \dots, v_5) form a linearly independent list then U has dimension greater than or equal to 5.
- (m) If (v_1, \dots, v_5) form a linearly independent list then U has dimension exactly 5.
- (n) If (v_1, \dots, v_5) gives a basis for U then (v_1, \dots, v_5) are linearly independent.
- (o) If (v_1, \dots, v_5) gives a basis for U then $U = \operatorname{Span}(v_1, \dots, v_5)$.
- (p) If (v_1, \dots, v_5) gives a basis for U then U has dimension less than or equal to 5.
- (q) If (v_1, \dots, v_5) gives a basis for U then U has dimension greater than or equal to 5.
- (r) If (v_1, \dots, v_5) gives a basis for U then U has dimension exactly 5.
- (s) If U has dimension 5 then (v_1, \dots, v_5) are linearly independent.
- (t) If U has dimension 5 then $U = \text{Span}(v_1, \dots, v_5)$.
- (u) If U has dimension 4 then (v_1, \dots, v_5) are linearly independent.
- (v) If U has dimension 4 then (v_1, \dots, v_5) span U.
- (w) If U has dimension 4 then (v_1, \dots, v_5) do not span U.
- (x) If U has dimension 6 then (v_1, \dots, v_5) are linearly independent.
- (y) If U has dimension 6 then (v_1, \dots, v_5) span U.
- (z) If U has dimension 6 then (v_1, \dots, v_5) do not span U.
- (25) If $v_1, v_2, v_3, v_4, v_5, v_6$ are vectors in a subspace U, determine whether each statement is necessarily true or could sometimes (or always) be false. In cases where the statement is false, give an example showing it is false.
 - (a) If $(v_1, v_2, v_3, v_4, v_5, v_6)$ are linearly independent, then we can add 0 or more vectors to the list to get a basis for U.
 - (b) If $(v_1, v_2, v_3, v_4, v_5, v_6)$ are linearly independent, then we can remove 0 or more vectors to the list to get a basis for U.
 - (c) If $(v_1, v_2, v_3, v_4, v_5, v_6)$ are linearly dependent, then we can add 0 or more vectors to the list to get a basis for U.
 - (d) If $(v_1, v_2, v_3, v_4, v_5, v_6)$ are linearly dependent, then we can remove 0 or more vectors to the list to get a basis for U.
 - (e) If $U = \text{Span}(v_1, v_2, v_3, v_4, v_5, v_6)$, then we can add 0 or more vectors to the list to get a basis for U.
 - (f) If $U = \text{Span}(v_1, v_2, v_3, v_4, v_5, v_6)$, then we can remove 0 or more vectors to the list to get a basis for U.
 - (g) If $(v_1, v_2, v_3, v_4, v_5, v_6)$ are linearly independent and $U = \text{Span}(v_1, v_2, v_3, v_4, v_5, v_6)$, then we can add 0 or more vectors to the list to get a basis for U.
 - (h) If $(v_1, v_2, v_3, v_4, v_5, v_6)$ are linearly independent and $U = \text{Span}(v_1, v_2, v_3, v_4, v_5, v_6)$, then we can remove 0 or more vectors to the list to get a basis for U.
 - (i) If $(v_1, v_2, v_3, v_4, v_5, v_6)$ are linearly dependent and $U = \text{Span}(v_1, v_2, v_3, v_4, v_5, v_6)$, then we can add 0 or more vectors to the list to get a basis for U.
 - (j) If $(v_1, v_2, v_3, v_4, v_5, v_6)$ are linearly dependent and $U = \text{Span}(v_1, v_2, v_3, v_4, v_5, v_6)$, then we can remove 0 or more vectors to the list to get a basis for U.

(26) If

what is the dimension of C(A) and what is the dimension of N(A)?

(27) If

$$A = \left[\begin{array}{cccccc} 1 & 2 & 3 & -2 & -1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{array} \right]$$

what is the dimension of C(A) and what is the dimension of N(A)?

(28) If

$$A = \begin{bmatrix} 5 & 2 & 0 & -2 & -1 & 0 \\ 15 & 0 & 0 & 18 & 1 & 13 \\ -8 & 0 & 1 & 4 & 17 & -21 \end{bmatrix}$$

what is the dimension of C(A) and what is the dimension of N(A)?

(29) If

what is the dimension of C(A) and what is the dimension of N(A)?

(30) If

$$A = \left[\begin{array}{rrrr} 1 & 0 & 3 & 4 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 3 \end{array} \right]$$

Find a basis for N(A) and a basis for $C(A^T)$. What are the dimensions of N(A) and $C(A^T)$? Verify by direct computation using your bases that N(A) is orthogonal to $C(A^T)$.

(31) If

$$A = \left[\begin{array}{cccc} 0 & 1 & 2 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 1 & 2 & 1 \end{array} \right]$$

Find a basis for N(A) and a basis for $C(A^T)$. What are the dimensions of N(A) and $C(A^T)$? Verify by direct computation using your bases that N(A) is orthogonal to $C(A^T)$.

(32) Find a non-zero vector which is perpendicular to the subspace

$$U = \operatorname{Span} \left(\begin{bmatrix} 1\\3\\1\\2 \end{bmatrix}, \begin{bmatrix} 1\\2\\1\\2 \end{bmatrix}, \begin{bmatrix} 1\\3\\1\\3 \end{bmatrix} \right)$$

(33) Find a non-zero vector which is perpendicular to the subspace

$$U = \operatorname{Span} \left(\begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1\\1\\1 \end{bmatrix} \right)$$

(34) Find a non-zero vector which is perpendicular to all the vectors in the following list:

$$v_1 = \begin{bmatrix} 1 \\ -1 \\ 2 \\ 0 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 2 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 3 \end{bmatrix}$$

(35) Find a non-zero vector which is perpendicular to all the vectors in the following list:

$$v_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 2 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \quad v_4 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 2 \\ 1 \end{bmatrix}$$

(36) Amongst the following subspaces, specify all pairs which are orthogonal to each other. Which of these pairs are orthogonal complements?

$$U_{1} = \operatorname{Span}\left(\begin{bmatrix} 1\\1\\1 \end{bmatrix}\right), \quad U_{2} = \operatorname{Span}\left(\begin{bmatrix} -1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 3\\-2\\-1 \end{bmatrix}\right), \quad U_{3} = \operatorname{Span}\left(\begin{bmatrix} 2\\1\\4 \end{bmatrix}\right),$$

$$U_{4} = \operatorname{Span}\left(\begin{bmatrix} -2\\0\\1 \end{bmatrix}, \begin{bmatrix} 3\\-2\\-1 \end{bmatrix}\right), \quad U_{5} = \operatorname{Span}\left(\begin{bmatrix} 2\\2\\2 \end{bmatrix}, \begin{bmatrix} -3\\2\\1 \end{bmatrix}\right), \quad U_{5} = \operatorname{Span}\left(\begin{bmatrix} -3\\2\\1 \end{bmatrix}\right)$$

(37) Calculate the projection of the vector v onto the line $L = \operatorname{Span}(w)$ where

$$v = \begin{bmatrix} 2 \\ 1 \\ 1 \\ 0 \\ -1 \end{bmatrix}, \quad w = \begin{bmatrix} 1 \\ 0 \\ -2 \\ 0 \\ 2 \end{bmatrix}$$

(38) Calculate the projection of the vector v onto the line $L = \operatorname{Span}(w)$ where

$$v = \begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \\ -1 \end{bmatrix}, \quad w = \begin{bmatrix} 3 \\ 2 \\ -2 \\ 2 \\ 2 \end{bmatrix}$$

(39) Find the projection matrix which projects vectors onto the line $L = \operatorname{Span}(w)$ where

$$w = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 2 \end{bmatrix}$$

(40) Find the projection matrix which projects vectors onto the line $L = \operatorname{Span}(w)$ where

$$w = \begin{bmatrix} 3 \\ -1 \\ 1 \\ 2 \\ 1 \\ -3 \end{bmatrix}$$

- (41) Calculate the line of best fit y = C + Dx through the points (1,0), (3,0), (2,1).
- (42) Calculate the line of best fit y = C + Dx through the points (1,1), (4,0), (2,2).
- (43) Calculate the line of best fit y = C + Dx through the points (1,0), (2,0), (3,0), and (4,2).
- (44) Find an orthonormal basis for the subspace

$$U = \operatorname{Span} \left(\begin{bmatrix} 1 \\ 0 \\ -1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ -1 \\ -2 \\ 3 \end{bmatrix} \right)$$

(45) Find an orthonormal basis for the subspace

$$U = \operatorname{Span} \left(\begin{bmatrix} 0 \\ 2 \\ -2 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 5 \\ -3 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 4 \\ -1 \\ -1 \\ -1 \end{bmatrix} \right)$$

(46) Check that for the following vectors (e_1, e_2, e_3) gives an orthonormal basis for \mathbb{R}^3 :

$$v_1 = \begin{bmatrix} \frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{bmatrix}, \quad v_2 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ -\frac{1}{\sqrt{2}} \end{bmatrix}, \quad v_3 = \begin{bmatrix} \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{bmatrix}$$

Then solve the following matrix equation for x, y, z

$$\begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & 0 & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

(47) Calculate the projection matrix which projects vectors onto the following subspace

$$U = \operatorname{Span} \left(\begin{bmatrix} \frac{1}{2} \\ 0 \\ -\frac{1}{2} \\ 0 \\ \frac{1}{2} \\ 0 \\ \frac{1}{2} \end{bmatrix}, \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 0 \\ 0 \\ \frac{1}{2} \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -\frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \\ 0 \\ 0 \end{bmatrix} \right)$$

(48) Calculate the projection matrix which projects vectors onto the following subspace

$$U = \text{Span} \begin{pmatrix} \begin{bmatrix} \frac{2}{3} \\ 0 \\ \frac{2}{3} \\ \frac{1}{3} \\ 0 \end{bmatrix}, \begin{bmatrix} -\frac{1}{3} \\ 0 \\ 0 \\ \frac{2}{3} \\ -\frac{2}{3} \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ -\frac{1}{3} \\ \frac{2}{3} \\ \frac{2}{3} \end{bmatrix} \end{pmatrix}$$

(49) Calculate the determinant of the matrix

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 2 \\ 2 & 2 & 3 & 3 \\ 1 & -1 & 1 & -1 \end{bmatrix}$$

(50) Calculate the determinant of the matrix

$$A = \left[\begin{array}{cccc} 0 & 1 & 1 & 1 \\ 1 & 1 & 2 & 17 \\ 0 & 0 & 0 & 8 \\ 0 & 0 & 1 & 0 \end{array} \right]$$

(51) Calculate the determinant of the matrix

$$A = \left[\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 2 \\ 1 & 1 & 3 & 1 \\ 1 & 4 & 1 & 1 \end{array} \right]$$

(52) Calculate the determinant of the matrix

$$A = \left[\begin{array}{rrrr} 0 & 3 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 2 & 0 \end{array} \right]$$

(53) Calculate the determinant of A^{-1} where A is the matrix

$$A = \left[\begin{array}{cccc} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 2 & 2 & 2 & 2 \\ 0 & 3 & 0 & 0 \end{array} \right]$$

(54) Determine the value of k which ensures the following matrix has det(A) = 0:

$$A = \left[\begin{array}{rrrr} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 5 \\ 5 & 3 & k & 3 \end{array} \right]$$

(55) Determine the value of k which ensures the following matrix has det(A) = 1:

$$A = \left[\begin{array}{rrrr} 1 & -2 & 1 & 0 \\ 0 & -2 & 0 & 1 \\ 0 & 0 & 0 & 5 \\ k & 2 & 0 & 3 \end{array} \right]$$

(56) Determine the value of k which ensures the following matrix has det(A) = 5:

$$A = \left[\begin{array}{cccc} 1 & 1 & 2 & 2 \\ 1 & 1 & 1 & 2 \\ 1 & 2 & 2 & 2 \\ 1 & 1 & 2 & k \end{array} \right]$$