MAT 022A CHAPTER 6 PRACTICE PROBLEMS

LAURA STARKSTON

(1) Find all (real or complex) eigenvalues and a maximal collection of linearly independent eigenvectors for the following matrix. Can the matrix be diagonalized? If so give the factorization $A=X D X^{-1}$.

$$
A=\left[\begin{array}{cc}
4 & 5 \\
-1 & -2
\end{array}\right]
$$

(2) Find all (real or complex) eigenvalues and a maximal collection of linearly independent eigenvectors for the following matrix. Can the matrix be diagonalized? If so give the factorization $A=X D X^{-1}$.

$$
A=\left[\begin{array}{cc}
1 & 1 \\
-1 & 3
\end{array}\right]
$$

(3) Find all (real or complex) eigenvalues and a maximal collection of linearly independent eigenvectors for the following matrix. Can the matrix be diagonalized? If so give the factorization $A=X D X^{-1}$.

$$
A=\left[\begin{array}{ccc}
-3 & 0 & 0 \\
-8 & 1 & 0 \\
16 & -8 & -3
\end{array}\right]
$$

(4) Find all (real or complex) eigenvalues and a maximal collection of linearly independent eigenvectors for the following matrix. Can the matrix be diagonalized? If so give the factorization $A=X D X^{-1}$.

$$
A=\left[\begin{array}{cc}
2 & -1 \\
2 & 4
\end{array}\right]
$$

(5) Find all (real or complex) eigenvalues and a maximal collection of linearly independent eigenvectors for the following matrix. Can the matrix be diagonalized? If so give the factorization $A=X D X^{-1}$.

$$
A=\left[\begin{array}{ll}
1 & 3 \\
4 & 2
\end{array}\right]
$$

(6) Find all (real or complex) eigenvalues and a maximal collection of linearly independent eigenvectors for the following matrix. Can the matrix be diagonalized? If so give the factorization $A=X D X^{-1}$.

$$
A=\left[\begin{array}{cc}
3 & 4 \\
-2 & -1
\end{array}\right]
$$

(7) Find all (real or complex) eigenvalues and a maximal collection of linearly independent eigenvectors for the following matrix. Can the matrix be diagonalized? If so give the factorization $A=X D X^{-1}$.

$$
A=\left[\begin{array}{ccc}
-5 & 0 & -4 \\
20 & 2 & 11 \\
6 & 0 & 5
\end{array}\right]
$$

(8) Find all (real or complex) eigenvalues and a maximal collection of linearly independent eigenvectors for the following matrix. Can the matrix be diagonalized? If so give the factorization $A=X D X^{-1}$.

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 2 & 0 \\
-1 & -14 & -2
\end{array}\right]
$$

(9) Find all (real or complex) eigenvalues and a maximal collection of linearly independent eigenvectors for the following matrix. Can the matrix be diagonalized? If so give the factorization $A=X D X^{-1}$.

$$
A=\left[\begin{array}{ccc}
0 & 0 & -1 \\
9 & 3 & 3 \\
1 & 0 & 0
\end{array}\right]
$$

(10) True or False?
(a) Any $(n \times n)$ matrix has exactly n different eigenvalues.
(b) Any $(n \times n)$ matrix which has n different eigenvalues is symmetric.
(c) Any $(n \times n)$ matrix which has n linearly independent eigenvectors is diagonalizable.
(d) Any $(n \times n)$ matrix has at least n different eigenvalues.
(e) Any $(n \times n)$ matrix has exactly n linearly independent eigenvectors.
(f) Any $(n \times n)$ matrix which is diagonalizable is symmetric.
(g) Any $(n \times n)$ matrix has at least n linearly independent eigenvectors.
(h) Any $(n \times n)$ symmetric matrix has n linearly independent eigenvectors.
(i) Any $(n \times n)$ symmetric matrix is diagonalizable.
(j) Any $(n \times n)$ matrix which has n linearly independent eigenvectors has n different eigenvalues.
(k) Any $(n \times n)$ matrix has at most n linearly independent eigenvectors.
(l) Any $(n \times n)$ matrix which has n different eigenvalues has n linearly independent eigenvectors.
(m) Any $(n \times n)$ symmetric matrix has exactly n different eigenvalues.
(n) Any $(n \times n)$ matrix has at most n different eigenvalues.
(o) Any $(n \times n)$ matrix which has n different eigenvalues is diagonalizable.
(p) Any $(n \times n)$ matrix which is has n linearly independent eigenvectors is symmetric.
(11) For which value of c does the following matrix have exactly one real eigenvalue? Is the matrix with that value of c diagonalizable?

$$
A=\left[\begin{array}{cc}
5 & -2 \\
c & 1
\end{array}\right]
$$

(12) For which values of c does the following matrix have exactly two distinct real eigenvalues? For which values of c does the matrix have exactly one real eigenvalue? For which values of c does the matrix have exactly two complex eigenvalues? Find the eigenvalues and eigenvectors when $c=0$. Find the eigenvalues and eigenvectors when $c=-2$. For what values of c is the matrix diagonalizable?

$$
A=\left[\begin{array}{ll}
3 & 3 \\
c & 5
\end{array}\right]
$$

