MAT 239: HOMEWORK 1

(1) Stereographic projection: Stereographic projection defines a diffeomorphism $p_{N}: S^{2} \backslash\{N\} \rightarrow \mathbb{R}^{2}$ where $N=(0,0,1)$ is the north pole as follows. Embed \mathbb{R}^{2} in \mathbb{R}^{3} as the points where $z=0$. Then for any point $\left(x_{0}, y_{0}, z_{0}\right) \in S^{2} \backslash\{N\}$, the line through $\left(x_{0}, y_{0}, z_{0}\right)$ intersects \mathbb{R}^{2} at a unique point $p_{N}\left(\left(x_{0}, y_{0}, z_{0}\right)\right)$.
(a) Find an explicit formula for $p_{N}\left(\left(x_{0}, y_{0}, z_{0}\right)\right)$.
(b) Find an explicit formula for $p_{N}^{-1}: \mathbb{R}^{2} \rightarrow S^{2} \backslash\{N\}$.
(c) Define an analogous projection $p_{S}: S^{2} \backslash\{S\} \rightarrow \mathbb{R}^{2}$, and compute the transition function $p_{S} \circ p_{N}^{-1}$ on the domain where they are commonly defined.
(d) Generalize stereographic projection to define a diffeomorphism $p_{N}^{k}: S^{k} \backslash\{N\} \rightarrow \mathbb{R}^{k}$.
(2) Tangent space to the sphere: Consider the 2 -sphere

$$
S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}
$$

(a) Determine the tangent space $T_{(x, y, z)} S^{2}$.
(b) Let $f: S^{2} \rightarrow \mathbb{R}$ be the restriction of the projection $f(x, y, z)=x$. Calculate

$$
d f_{(x, y, z)}: T_{(x, y, z)} S^{2} \rightarrow T_{x} \mathbb{R}
$$

and determine at which points (x, y, z) is this the zero map.
(3) The 2-Torus: The 2-torus T^{2} is defined to be $S^{1} \times S^{1}$. We can realize this as a subset of \mathbb{R}^{N} in different ways.
(a) Viewing $S^{1} \subset \mathbb{R}^{2}$, defines $T^{2}=S^{1} \times S^{1} \subset \mathbb{R}^{4}$. Define diffeomorphisms from enough open subsets of \mathbb{R}^{2} to open subsets of $T^{2} \subset \mathbb{R}^{4}$ to cover T^{2} to prove that it is a 2-dimensional manifold.
(b) Consider the subset of points $T_{a, b}$ in \mathbb{R}^{3} at distance b from the circle of radius a where $0<b<a$. Prove that T^{2} is diffeomorphic to this subset.
(c) Determine the tangent space to $T_{a, b}$ at each point, presented as the span of two vectors.

(4) Manifolds with boundary:

(a) Prove that the unit ball

$$
B^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{1}^{2}+\cdots+x_{n}^{2} \leq 1\right\}
$$

is a smooth n-manifold with boundary.
(b) Prove that the unit square

$$
R=\{(x, y) \mid 0 \leq x, y \leq 1\}
$$

is NOT a 2-manifold with boundary.

(5) Projective spaces:

(a) The real n-dimensional projective space, $\mathbb{R} \mathrm{P}^{n}$ is the quotient of $\mathbb{R}^{n+1} \backslash 0$ by the equivalence relation $\left(x_{1}, \cdots, x_{n+1}\right) \sim\left(\lambda x_{1}, \cdots, \lambda x_{n+1}\right)$ for $\lambda \in \mathbb{R} \backslash 0$. A typical way to represent $\mathbb{R} P^{n}$ is to use homogeneous coordinates as follows:

$$
\begin{aligned}
& \mathbb{R P}^{n}=\left\{\left[x_{1}: x_{2}: \cdots: x_{n}, x_{n+1}\right] \mid\left(x_{1}, x_{2}, \cdots, x_{n}, x_{n+1}\right) \in \mathbb{R}^{n+1} \backslash(0,0, \cdots, 0,0)\right\} \\
& \text { where }\left[x_{1}: x_{2}: \cdots: x_{n}: x_{n+1}\right]=\left[\lambda x_{1}: \lambda x_{2}: \cdots: \lambda x_{n}: \lambda x_{n+1}\right] .
\end{aligned}
$$

Prove that $\mathbb{R P}^{n}$ is a manifold. Hint: show that the subsets of points with a representative where $x_{i}=1$ give a covering by coordinate charts.
(b) The complex projective spaces, $\mathbb{C P}^{n}$, is defined similarly as the quotient of $\mathbb{C}^{n+1} \backslash 0$ by the equivalence relation $\left(z_{1}, \cdots, z_{n+1}\right) \sim\left(\lambda z_{1}, \cdots, \lambda z_{n+1}\right)$ for $\lambda \in \mathbb{C} \backslash 0$. It also can be expressed in homogeneous coordinates $\left[z_{1}: z_{2}: \cdots: z_{n+1}\right]=\left[\lambda z_{1}: \lambda z_{2}: \cdots: \lambda z_{n+1}\right]$ for $\lambda \in \mathbb{C} \backslash 0$. Show that $\mathbb{C P}^{n}$ is a manifold. What is its (real) dimension?

(6) Products:

(a) Suppose $f: X \rightarrow X^{\prime}$ and $g: Y \rightarrow Y^{\prime}$ are smooth maps. Define the product map $f \times g$: $X \times Y \rightarrow X^{\prime} \times Y^{\prime}$ by

$$
(f \times g)(x, y)=(f(x), g(y))
$$

Prove that $f \times g$ is smooth and that $d(f \times g)_{(x, y)}=d f_{x} \times d g_{y}$.
(b) Show that for any smooth manifolds X and Y,

$$
T_{(x, y)}(X \times Y)=T_{x} X \times T_{x} Y
$$

(c) Show that the projection map $\pi: X \times Y \rightarrow X$ given by $\pi(x, y)=x$ is smooth and $d \pi_{(x, y)}(v, w)=$ v for $(v, w) \in T_{x} X \times T_{y} Y=T_{(x, y)}(X \times Y)$.
(7) Cut-off and bump functions:
(a) Consider the following function $\rho: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
\rho(x)= \begin{cases}e^{-1 / x^{2}} & x>0 \\ 0 & x \leq 0\end{cases}
$$

Prove that ρ is smooth.
(b) For $a<b$, define $\sigma_{a, b}(x)=\rho(x-a) \rho(b-x)$. Prove that $\sigma_{a, b}$ is a smooth function which is positive on (a, b) and 0 elsewhere.
(c) Define

$$
\tau_{a, b}(x)=\frac{\int_{x}^{b} \sigma_{a, b}(u) d u}{\int_{a}^{b} \sigma_{a, b}(u) d u}
$$

Prove that $\tau_{a, b}$ is a smooth function such that $\tau_{a, b}(x)=1$ for $x \leq a, 0<\tau_{a, b}(x)<1$ for $a<x<b$, and $\tau_{a, b}(x)=0$ for $t \geq b$.
(d) Construct a smooth function on \mathbb{R}^{k} that equals 1 on points in the ball of radius $\varepsilon>0,0$ outside the ball of radius $\alpha>\varepsilon$, and is strictly between 0 and 1 in between.

