MAT 239: HOMEWORK 1

- (1) Stereographic projection: Stereographic projection defines a diffeomorphism $p_N : S^2 \setminus \{N\} \to \mathbb{R}^2$ where N = (0, 0, 1) is the north pole as follows. Embed \mathbb{R}^2 in \mathbb{R}^3 as the points where z = 0. Then for any point $(x_0, y_0, z_0) \in S^2 \setminus \{N\}$, the line through (x_0, y_0, z_0) intersects \mathbb{R}^2 at a unique point $p_N((x_0, y_0, z_0))$.
 - (a) Find an explicit formula for $p_N((x_0, y_0, z_0))$.
 - (b) Find an explicit formula for $p_N^{-1} : \mathbb{R}^2 \to S^2 \setminus \{N\}$.
 - (c) Define an analogous projection $p_S: S^2 \setminus \{S\} \to \mathbb{R}^2$, and compute the transition function $p_S \circ p_N^{-1}$ on the domain where they are commonly defined.
 - (d) Generalize stereographic projection to define a diffeomorphism $p_N^k: S^k \setminus \{N\} \to \mathbb{R}^k$.
- (2) Tangent space to the sphere: Consider the 2-sphere

$$S^{2} = \{ (x, y, z) \in \mathbb{R}^{3} \mid x^{2} + y^{2} + z^{2} = 1 \}.$$

- (a) Determine the tangent space $T_{(x,y,z)}S^2$.
- (b) Let $f: S^2 \to \mathbb{R}$ be the restriction of the projection f(x, y, z) = x. Calculate

$$df_{(x,y,z)}: T_{(x,y,z)}S^2 \to T_x\mathbb{R}$$

and determine at which points (x, y, z) is this the zero map.

- (3) The 2-Torus: The 2-torus T^2 is defined to be $S^1 \times S^1$. We can realize this as a subset of \mathbb{R}^N in different ways.
 - (a) Viewing $S^1 \subset \mathbb{R}^2$, defines $T^2 = S^1 \times S^1 \subset \mathbb{R}^4$. Define diffeomorphisms from enough open subsets of \mathbb{R}^2 to open subsets of $T^2 \subset \mathbb{R}^4$ to cover T^2 to prove that it is a 2-dimensional manifold.
 - (b) Consider the subset of points $T_{a,b}$ in \mathbb{R}^3 at distance b from the circle of radius a where 0 < b < a. Prove that T^2 is diffeomorphic to this subset.
 - (c) Determine the tangent space to $T_{a,b}$ at each point, presented as the span of two vectors.

(4) Manifolds with boundary:

(a) Prove that the unit ball

$$B^{n} = \{(x_{1}, \dots, x_{n}) \mid x_{1}^{2} + \dots + x_{n}^{2} \le 1\}$$

is a smooth *n*-manifold with boundary.

(b) Prove that the unit square

$$R = \{(x, y) \mid 0 \le x, y \le 1\}$$

is NOT a 2-manifold with boundary.

(5) **Projective spaces:**

(a) The real n-dimensional projective space, $\mathbb{R}P^n$ is the quotient of $\mathbb{R}^{n+1} \setminus 0$ by the equivalence relation $(x_1, \dots, x_{n+1}) \sim (\lambda x_1, \dots, \lambda x_{n+1})$ for $\lambda \in \mathbb{R} \setminus 0$. A typical way to represent $\mathbb{R}P^n$ is to use homogeneous coordinates as follows:

$$\mathbb{R}P^{n} = \{ [x_{1} : x_{2} : \dots : x_{n}, x_{n+1}] \mid (x_{1}, x_{2}, \dots, x_{n}, x_{n+1}) \in \mathbb{R}^{n+1} \setminus (0, 0, \dots, 0, 0) \}$$

where $[x_{1} : x_{2} : \dots : x_{n} : x_{n+1}] = [\lambda x_{1} : \lambda x_{2} : \dots : \lambda x_{n} : \lambda x_{n+1}].$

Prove that \mathbb{RP}^n is a manifold. Hint: show that the subsets of points with a representative where $x_i = 1$ give a covering by coordinate charts.

(b) The complex projective spaces, \mathbb{CP}^n , is defined similarly as the quotient of $\mathbb{C}^{n+1} \setminus 0$ by the equivalence relation $(z_1, \dots, z_{n+1}) \sim (\lambda z_1, \dots, \lambda z_{n+1})$ for $\lambda \in \mathbb{C} \setminus 0$. It also can be expressed in homogeneous coordinates $[z_1 : z_2 : \dots : z_{n+1}] = [\lambda z_1 : \lambda z_2 : \dots : \lambda z_{n+1}]$ for $\lambda \in \mathbb{C} \setminus 0$. Show that \mathbb{CP}^n is a manifold. What is its (real) dimension?

(6) Products:

(a) Suppose $f:X\to X'$ and $g:Y\to Y'$ are smooth maps. Define the product map $f\times g:X\times Y\to X'\times Y'$ by

$$(f \times g)(x, y) = (f(x), g(y)).$$

Prove that $f \times g$ is smooth and that $d(f \times g)_{(x,y)} = df_x \times dg_y$.

(b) Show that for any smooth manifolds X and Y,

$$T_{(x,y)}(X \times Y) = T_x X \times T_x Y.$$

(c) Show that the projection map $\pi : X \times Y \to X$ given by $\pi(x, y) = x$ is smooth and $d\pi_{(x,y)}(v, w) = v$ for $(v, w) \in T_x X \times T_y Y = T_{(x,y)}(X \times Y)$.

(7) Cut-off and bump functions:

(a) Consider the following function $\rho : \mathbb{R} \to \mathbb{R}$ defined by

$$\rho(x) = \begin{cases} e^{-1/x^2} & x > 0\\ 0 & x \le 0 \end{cases}$$

Prove that ρ is smooth.

- (b) For a < b, define $\sigma_{a,b}(x) = \rho(x-a)\rho(b-x)$. Prove that $\sigma_{a,b}$ is a smooth function which is positive on (a, b) and 0 elsewhere.
- (c) Define

$$\tau_{a,b}(x) = \frac{\int_x^b \sigma_{a,b}(u) du}{\int_x^b \sigma_{a,b}(u) du}.$$

Prove that $\tau_{a,b}$ is a smooth function such that $\tau_{a,b}(x) = 1$ for $x \leq a, 0 < \tau_{a,b}(x) < 1$ for a < x < b, and $\tau_{a,b}(x) = 0$ for $t \geq b$.

(d) Construct a smooth function on \mathbb{R}^k that equals 1 on points in the ball of radius $\varepsilon > 0$, 0 outside the ball of radius $\alpha > \varepsilon$, and is strictly between 0 and 1 in between.