MAT 239: HOMEWORK 2

(1) Chain Rule: Assuming the chain rule for maps between open subsets of \mathbb{R}^n

$$f: \mathbb{R}^n \to \mathbb{R}^m, \ g: \mathbb{R}^m \to \mathbb{R}^k, \ d(g \circ f)_x = dg_{f(x)} \circ df_x,$$

prove the chain rule for maps between smooth manifolds, i.e. if X, Y, Z are smooth manifolds of dimension m, n, k respectively and $f: X \to Y$ and $g: Y \to Z$ are smooth maps, prove that

$$d(g \circ f)_x = dg_{f(x)} \circ df_x$$

using parametrizations.

(2) Vector fields on S^2 : Let

$$S^{2} = \{ (x, y, z) \in \mathbb{R}^{3} \mid x^{2} + y^{2} + z^{2} = 1 \}.$$

Prove that $\zeta: S^2 \to TS^2$ defined by

$$\zeta((x,y,z))=((x,y,z),\langle z,z,-x-y\rangle)$$

is a smooth vector field on S^2 .

- (3) TT^2 is a trivial bundle: Let $T^2 = S^1 \times S^1$ (you may embed in \mathbb{R}^3 or $\mathbb{R}^2 \times \mathbb{R}^2 = \mathbb{R}^4$ as in hw1).
 - (a) Find two vector fields ζ_1 and ζ_2 on T^2 , such that for each $x \in T^2$ $(\zeta_1(x), \zeta_2(x))$ is a basis for $T_x T^2$. (Define ζ_1 and ζ_2 , check they are smooth vector fields, and check they give a basis at each point.)
 - (b) Show that the map

$$\Psi: T^2 \times \mathbb{R}^2 \to TT^2$$

defined by

$$\Psi(x, (a, b)) = (x, a\zeta_1(x) + b\zeta_2(x))$$

is a diffeomorphism.

When TM is diffeomorphic to $M \times \mathbb{R}^n$, we say that TM is a *trivial bundle*.