MAT 239: HOMEWORK 5

(1) Let $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ be a smooth function. For each $a \in \mathbb{R}^{k}$ define

$$
f_{a}\left(x_{1}, \ldots, x_{k}\right)=f(x)+a_{1} x_{1}+\cdots+a_{k} x_{k}
$$

Prove that for almost every $a \in \mathbb{R}^{k}$ (in the sense of Sard's theorem), that f_{a} is a Morse function.
Hint: show that you can apply the generic transversality theorem to the family of functions F : $\mathbb{R}^{k} \times \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ defined by

$$
F(x, a)=\left(\frac{\partial f}{\partial x_{1}}(x)+a_{1}, \ldots, \frac{\partial f}{\partial x_{k}}+a_{k}\right)
$$

(2) Let $E=\left\{x^{2}+2 y^{2}+3 z^{2}=1\right\}$ and let $S_{a}=\left\{x^{2}+y^{2}+z^{2}=a\right\}$. Determine for which values of a, E intersects S transversally.
(3) Each of the following functions has a critical point a the origin. Determine whether or not this critical point is non-degenerate, and if it is, determine whether it is a local maximum (index 2), saddle (index 1), or local minimum (index 0).
(a) $f(x, y)=x^{2}+4 y^{3}$
(b) $f(x, y)=x^{2}-2 x y+y^{2}$
(c) $f(x, y)=x^{2}+y^{4}$
(d) $f(x, y)=x^{2}+11 x y+y^{2} / 2+x^{6}$
(e) $f(x, y)=10 x y+y^{2}+75 y^{3}$

