MAT 239: HOMEWORK 6

(1) Let $f: X \to Y$ and $g: Y \to Z$ be smooth maps between manifolds, and suppose X is compact. Further suppose that $\dim(X) + \dim(W) = \dim(Z)$. Assume g is transverse to a submanifold W of Z so $g^{-1}(W)$ is a submanifold of Y. Prove that

$$I_2(f, g^{-1}(W)) = I_2(g \circ f, W)$$

- (2) Let $\Delta \subset S^1 \times S^1$ be the diagonal submanifold $\Delta = \{(e^{i\theta}, e^{i\theta}) \subset S^1 \times S^1\}$. We will calculate $I_2(\Delta, \Delta)$.
 - (a) Show that $f: S^1 \to S^1 \times S^1$ defined by $f(e^{i\theta}) = (e^{i\theta}, e^{i(\theta + \varepsilon)})$ is homotopic to the inclusion of the diagonal $i: S^1 \to S^1 \times S^1$ $i(e^{i\theta}) = (e^{i\theta}, e^{i\theta})$.
 - (b) Show that for $0 < \varepsilon < 2\pi$, the above defined map f is transverse to Δ .
 - (c) Calculate $I_2(\Delta, \Delta)$ by counting the number of points in $f^{-1}(\Delta) \mod 2$.
- (3) If $f: X \to Y$ is homotopic to a constant map and dim X > 0, show that for any submanifold $Z \subset Y$ such that dim $X + \dim Z = \dim Y$, $I_2(f, Z) = 0$.
- (4) Let $f_0, f_1 : X \to \mathbb{R}^n$ be two smooth maps. The *straight line homotopy* from f_0 to f_1 is defined by $F : X \times I \to \mathbb{R}^n$

$$F(x,t) = (1-t)f_0(x) + tf_1(x).$$

(Note, it is important that the target space is \mathbb{R}^n so we have the vector space operations of scalar multiplication and addition.)

- (a) Check that F is indeed a smooth homotopy from f_0 to f_1 .
- (b) Prove that every map $f: X \to \mathbb{R}^n$ is homotopic to a constant map.
- (c) Conclude using the previous problem that for any map $f: X \to \mathbb{R}^n$ with dim X > 0 and any submanifold $Z \subset \mathbb{R}^n$ with dim $X + \dim Z = n$ that $I_2(f, Z) = 0$.
- (5) Two compact submanifolds $K, L \subset M$ are cobordant in M if there exists a compact submanifold with boundary W in $M \times I$ (where $\partial W = W \cap \partial(M \times I)$) such that $W \cap M \times \{0\} = K \times \{0\}$ and $W \cap M \times \{1\} = L \times \{1\}$. (Note that this means dim $K = \dim L = \dim W - 1$.) Prove that if Kand L are cobordant in M then for every submanifold Z of M such that dim $K + \dim Z = \dim M$, $I_2(K, Z) = I_2(L, Z)$.
- (6) So far we have defined the (mod 2) intersection number between two submanifolds, or between a map and a submanifold of its target space. In this problem we will define the (mod 2) intersection number between two maps. Suppose X and Z are compact manifolds, and f : X → Y and g : Z → Y are smooth maps into a manifold Y. Suppose further that dim X + dim Z = dim Y. Let Δ = {(y, y) ∈ Y × Y} be the diagonal submanifold. Define

$$I_2(f,g) := I_2(f \times g, \Delta).$$

- (a) Check that the dimensions add up appropriately for $I_2(f \times g, \Delta)$ to make sense.
- (b) Prove that $I_2(f,g) = I_2(f',g) = I_2(f,g')$ if f is homotopic to f' and g is homotopic to g'.
- (c) Prove that $I_2(f,g) = I_2(g,f)$. (Hint: Use the map $s: Y \times Y \to Y \times Y$ defined by s(a,b) = (b,a), and the first exercise.)
- (d) In the case that Z is a submanifold of Y and g is the inclusion map $g = i : Z \to Y$, check that $I_2(f,i) = I_2(f,Z)$. (Check that the new definition gives the same answer as the old definition.)
- (e) Use the previous part to prove that if X, Z are compact submanifolds of Y then $I_2(X, Z) = I_2(Z, X)$.