MAT 239: HOMEWORK 6

(1) Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be smooth maps between manifolds, and suppose X is compact. Further suppose that $\operatorname{dim}(X)+\operatorname{dim}(W)=\operatorname{dim}(Z)$. Assume g is transverse to a submanifold W of Z so $g^{-1}(W)$ is a submanifold of Y. Prove that

$$
I_{2}\left(f, g^{-1}(W)\right)=I_{2}(g \circ f, W)
$$

(2) Let $\Delta \subset S^{1} \times S^{1}$ be the diagonal submanifold $\Delta=\left\{\left(e^{i \theta}, e^{i \theta}\right) \subset S^{1} \times S^{1}\right\}$. We will calculate $I_{2}(\Delta, \Delta)$.
(a) Show that $f: S^{1} \rightarrow S^{1} \times S^{1}$ defined by $f\left(e^{i \theta}\right)=\left(e^{i \theta}, e^{i(\theta+\varepsilon)}\right)$ is homotopic to the inclusion of the diagonal $i: S^{1} \rightarrow S^{1} \times S^{1} i\left(e^{i \theta}\right)=\left(e^{i \theta}, e^{i \theta}\right)$.
(b) Show that for $0<\varepsilon<2 \pi$, the above defined map f is transverse to Δ.
(c) Calculate $I_{2}(\Delta, \Delta)$ by counting the number of points in $f^{-1}(\Delta) \bmod 2$.
(3) If $f: X \rightarrow Y$ is homotopic to a constant map and $\operatorname{dim} X>0$, show that for any submanifold $Z \subset Y$ such that $\operatorname{dim} X+\operatorname{dim} Z=\operatorname{dim} Y, I_{2}(f, Z)=0$.
(4) Let $f_{0}, f_{1}: X \rightarrow \mathbb{R}^{n}$ be two smooth maps. The straight line homotopy from f_{0} to f_{1} is defined by $F: X \times I \rightarrow \mathbb{R}^{n}$

$$
F(x, t)=(1-t) f_{0}(x)+t f_{1}(x)
$$

(Note, it is important that the target space is \mathbb{R}^{n} so we have the vector space operations of scalar multiplication and addition.)
(a) Check that F is indeed a smooth homotopy from f_{0} to f_{1}.
(b) Prove that every map $f: X \rightarrow \mathbb{R}^{n}$ is homotopic to a constant map.
(c) Conclude using the previous problem that for any map $f: X \rightarrow \mathbb{R}^{n}$ with $\operatorname{dim} X>0$ and any submanifold $Z \subset \mathbb{R}^{n}$ with $\operatorname{dim} X+\operatorname{dim} Z=n$ that $I_{2}(f, Z)=0$.
(5) Two compact submanifolds $K, L \subset M$ are cobordant in M if there exists a compact submanifold with boundary W in $M \times I$ (where $\partial W=W \cap \partial(M \times I)$) such that $W \cap M \times\{0\}=K \times\{0\}$ and $W \cap M \times\{1\}=L \times\{1\}$. (Note that this means $\operatorname{dim} K=\operatorname{dim} L=\operatorname{dim} W-1$.) Prove that if K and L are cobordant in M then for every submanifold Z of M such that $\operatorname{dim} K+\operatorname{dim} Z=\operatorname{dim} M$, $I_{2}(K, Z)=I_{2}(L, Z)$.
(6) So far we have defined the (mod 2) intersection number between two submanifolds, or between a map and a submanifold of its target space. In this problem we will define the $(\bmod 2)$ intersection number between two maps. Suppose X and Z are compact manifolds, and $f: X \rightarrow Y$ and g : $Z \rightarrow Y$ are smooth maps into a manifold Y. Suppose further that $\operatorname{dim} X+\operatorname{dim} Z=\operatorname{dim} Y$. Let $\Delta=\{(y, y) \in Y \times Y\}$ be the diagonal submanifold. Define

$$
I_{2}(f, g):=I_{2}(f \times g, \Delta)
$$

(a) Check that the dimensions add up appropriately for $I_{2}(f \times g, \Delta)$ to make sense.
(b) Prove that $I_{2}(f, g)=I_{2}\left(f^{\prime}, g\right)=I_{2}\left(f, g^{\prime}\right)$ if f is homotopic to f^{\prime} and g is homotopic to g^{\prime}.
(c) Prove that $I_{2}(f, g)=I_{2}(g, f)$. (Hint: Use the map $s: Y \times Y \rightarrow Y \times Y$ defined by $s(a, b)=(b, a)$, and the first exercise.)
(d) In the case that Z is a submanifold of Y and g is the inclusion map $g=i: Z \rightarrow Y$, check that $I_{2}(f, i)=I_{2}(f, Z)$. (Check that the new definition gives the same answer as the old definition.)
(e) Use the previous part to prove that if X, Z are compact submanifolds of Y then $I_{2}(X, Z)=$ $I_{2}(Z, X)$.

