MAT 239: HOMEWORK 6

(1) Let $C_{p, q}$ be the curve in the torus $T^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$ given by the points

$$
C_{p, q}=\{(q t, p t) \mid t \in \mathbb{R}\}
$$

Orient $C_{p, q}$ by the image of the positive ∂_{t} vector under the differential of the immersion $\phi(t)=$ ($q t, p t$).
(a) Calculate the oriented intersection number $I\left(C_{1,0}, C_{p, q}\right)$.
(b) Calculate the oriented intersection number $I\left(C_{0,1}, C_{p, q}\right)$.
(c) Calculate the oriented intersection number $I\left(C_{3,5}, C_{p, q}\right)$.
(d) (Ungraded) Can you find a general formula for $I\left(C_{m, n}, C_{p, q}\right)$?
(2) Recall that the degree of a map $f: X \rightarrow Y$ where $\operatorname{dim} X=\operatorname{dim} Y$ is the oriented intersection number of f with a point $\{y\}$. For a positive integer m prove that
(a) $f_{m}: S^{1} \rightarrow S^{1}$ defined by $f_{m}(z)=z^{m}$ (viewing $z \in S^{1} \subset \mathbb{C}$ as a complex number) has degree m.
(b) $g_{m}: S^{1} \rightarrow S^{1}$ defined by $g_{m}(z)=\bar{z}^{m}$ has degree $-m$ (where the bar denotes complex conjugation).
(3) The antipodal map $a: S^{k} \rightarrow S^{k}$ is defined by $a(x)=-x$.
(a) Compute the degree of a in terms of k.
(b) Prove that the antipodal map is homotopic to the identity if and only if k is odd. Hint: To construct the homotopy when k is odd consider the following homotopy in the $k=1$ case:

$$
\left[\begin{array}{cc}
\cos (\pi t) & -\sin (\pi t) \\
\sin (\pi t) & \cos (\pi t)
\end{array}\right]
$$

(4) Euler characteristic and vector fields. Let $\Delta \subset X \times X$ be the diagonal submanifold of points $\{(x, x)\}$.
(a) Show that the tangent bundle is

$$
T_{(x, x)}(\Delta)=\left\{(v, v) \in T_{x} X \times T_{x} X \cong T_{(x, x)}(X \times X)\right\}
$$

and the normal bundle is

$$
N_{(x, x)}(\Delta ; X \times X)=\left\{(v,-v) \in T_{x} X \times T_{x} X \cong T_{(x, x)}(X \times X)\right\}
$$

(b) Prove that the map $\Psi: T X \rightarrow N(\Delta ; X \times X)$ defined by $\Psi(x, v)=((x, x),(v,-v))$ is a diffeomorphism. By the tubular neighborhood theorem, this implies there is a neighborhood of X in $T X$, a neighborhood of Δ in $X \times X$, and a diffeomorphism between these neighborhoods which sends X to Δ in the usual way $x \mapsto(x, x)$.
(c) Let Z denote the zero section $Z=\{(x, 0) \in T X\}$. Prove that the self-intersection number of the diagonal $I(\Delta, \Delta)$ in $X \times X$ (i.e. the Euler characteristic of X) is equal to the self-intersection number of the zero section $I(Z, Z)$ in $T X$. (Orient $T X$ by locally in each coordinate chart specifying a basis for $T_{(x, v)}(T X)$ of the form $\left(\partial_{x_{1}}, \ldots, \partial_{x_{n}}, \partial_{y_{1}}, \ldots, \partial_{y_{n}}\right)$ where $\left(x_{1}, \ldots, x_{n}\right)$ give coordinates on X and $\left(y_{1}, \ldots, y_{n}\right)$ are the corresponding induced coordinates on $T_{x} X$.
(d) Let $V: X \rightarrow T X$ be any vector field on X. Prove that $I(V, Z)=I(Z, Z)$ by constructing a homotopy from V to the inclusion of the zero section. Conclude that the Euler characteristic of X is equal to $I(V, Z)$ for any vector field V on X.
(5) Morse theory and Euler characteristic.
(a) Let $f_{k}\left(x_{1}, \ldots, x_{n}\right)=-x_{1}^{2}-\cdots-x_{k}^{2}+x_{k+1}^{2}+\cdots x_{n}^{2}$ be the standard model for an index k Morse critical point. Calculate the gradient vector field

$$
\nabla f=\left\langle\frac{\partial f}{\partial x_{1}}, \cdots, \frac{\partial f}{\partial x_{n}}\right\rangle
$$

(b) Let Z denote the zero section $Z=\left\{\left(\left(x_{1}, \ldots, x_{n}\right),(0, \ldots, 0)\right) \in T \mathbb{R}^{n}\right\}$. Prove that ∇f is transverse to Z.
(c) Calculate $I(\nabla f, Z)$ in terms of k.
(d) Suppose $f: X \rightarrow \mathbb{R}$ is a Morse function. By the Morse Lemma, for every critical point of f, there exist local coordinates defined near that point such that f looks like one of the standard models in part (a). The corresponding value of k is called the index of the critical point of f. Let $k(p)$ denote the index of a critical point $p \in \operatorname{Crit}(f)$. Prove that

$$
I(\nabla f, Z)=\sum_{p \in \operatorname{Crit}(f)}(-1)^{k(p)} .
$$

(By the previous problem, this computes the Euler characteristic of X. Note that a key idea in Morse theory is that a Morse function on X induces a cell decomposition where critical points of index k are in bijection with cells of dimension k. This recovers the definition of Euler characteristic as an alternating sum of the number of cells.)
(6) Let X be a manifold with boundary, Y a manifold, and Z a submanifold. Fix orientations on X, Y, and Z. Let $f: X \rightarrow Y$ be a smooth map such that f and ∂f are transverse to Z. Then $W:=f^{-1}(Z)$ is a submanifold with boundary of X. Let A denote the boundary of $f^{-1}(Z)$. Show that the following two induced orientations on A differ by $(-1)^{\operatorname{codim} Z}$:

- First give $W=f^{-1}(Z)$ the preimage orientation induced by f. Then give A the boundary orientation induced as the boundary of W.
- First give ∂X the boundary orientation induced as the boundary of X. Then give A the preimage orientation induced as the preimage of $\partial f: \partial X \rightarrow Y$.

Hint: At a fixed point $p \in A$, show that
(a) you can choose the same vector n_{p} to serve as an outward pointing vector in $T_{p}(W)$ to A, and as an outward pointing vector in $T_{p}(X)$ to ∂X.
(b) you can choose the same basis $\left(v_{1}, \ldots, v_{k}\right)$ for the normal space $N_{p}(A ; \partial X)$ to serve also as a basis for $N_{p}(W ; X)$.
Then name a basis $\left(w_{1}, \ldots, w_{\ell}\right)$ for $T_{p} A$ and an oriented basis $\left(u_{1}, \ldots, u_{m}\right)$ for $T_{f(p)} Z$, and use the definitions of induced orientations to determine what condition ensures that $\left(w_{1}, \ldots, w_{\ell}\right)$ represents the above specified orientation in each of the two cases.

