MAT 239: HOMEWORK 8

(1) Let $f : \mathbb{R}^3 \to \mathbb{R}^3$ be a diffeomorphism. Put coordinates (x_1, x_2, x_3) on the domain and (y_1, y_2, y_3) on the co-domain. Show directly from the definition of the pull-back (compute explicitly) that

$$f^*(dy_1 \wedge dy_2 \wedge dy_3)_p = \det(df_p)dx_1 \wedge dx_2 \wedge dx_3.$$

(2) Let $f: X \to Y$ be a smooth map between manifolds, and let $\phi: Y \to \mathbb{R}$ be a smooth function (i.e. a zero form on Y). Then the derivative $d\phi$ can be viewed as a 1-form on Y. Prove directly using the definitions that

$$f^*(d\phi) = d(f^*\phi).$$

(3) Let $c : [a,b] \to X$ be a smooth curve, and let c(a) = p and c(b) = q. Show that if $\omega = df$ where $f : X \to \mathbb{R}$ is a smooth function then

$$\int_{a}^{b} c^* \omega = f(q) - f(p)$$

(4) Let $\omega \in \Omega^1(\mathbb{R}^2 \setminus \{0\})$ be defined by

$$\omega_{(x,y)} = \left(\frac{-y}{x^2 + y^2}\right)dx + \left(\frac{x}{x^2 + y^2}\right)dy.$$

Let $C_R \subset \mathbb{R}^2 \setminus \{0\}$ the the circle of radius R. Calculate $\int_{C_R} \omega$.

- (5) Let $\alpha = dz \sum_{i=1}^{n} y_i dx_i$ on \mathbb{R}^{2n+1} . Prove that the 2n+1 form $\omega := \alpha \wedge (d\alpha)^n$ is non-zero at every point in \mathbb{R}^{2n+1} .
- (6) Prove the following properties for the exterior derivative d defined on a smooth manifold (you may use the corresponding properties for the exterior derivative on \mathbb{R}^n):
 - (a) $d(\omega \wedge \eta) = (d\omega) \wedge \eta + (-1)^p \omega \wedge (d\eta)$ where $\omega \in \Omega^p(X)$.

(b)
$$d(d\omega) = 0.$$

- (c) $d \circ g^* = g^* \circ d$.
- (7) (Not graded, but highly recommended) Work through the exercises in Guillemin Pollack Chapter 4 Section 6 (Cohomology wih Forms).