Connectivity of Markoff mod p Graphs and Maximal Divisors

Matthew Litman
Joint work J. Eddy, E. Fuchs, D. Martin, \& N. Tripeny

Joint Mathematics Meetings
AMS Special Session on Recent Developments on Markoff Triples January $4^{\text {th }}, 2024$

Outline of the Talk

1 Introduce \mathcal{G}_{p} and a Conjecture on Markoff $\bmod p$ Connectivity

Outline of the Talk

1 Introduce \mathcal{G}_{p} and a Conjecture on Markoff mod p Connectivity
2 A Lower Bound for Connectivity of \mathcal{G}_{p}

Outline of the Talk

1 Introduce \mathcal{G}_{p} and a Conjecture on Markoff $\bmod p$ Connectivity
2 A Lower Bound for Connectivity of \mathcal{G}_{p}
3 Introduce Maximal Divisors $M_{d}(n)$

Outline of the Talk

1 Introduce \mathcal{G}_{p} and a Conjecture on Markoff $\bmod p$ Connectivity
2 A Lower Bound for Connectivity of \mathcal{G}_{p}
3 Introduce Maximal Divisors $M_{d}(n)$
4 A Better Lower Bound from $M_{d}(n)$

Markoff Triples - What Are They?

A Markoff triple (x, y, z) is a non-negative integer triple satisfying the Markoff equation

$$
\mathcal{M}: x^{2}+y^{2}+z^{2}=3 x y z
$$

A coordinate of a triple is called a Markoff number.

Markoff Triples - What Are They?

A Markoff triple (x, y, z) is a non-negative integer triple satisfying the Markoff equation

$$
\mathcal{M}: x^{2}+y^{2}+z^{2}=3 x y z
$$

A coordinate of a triple is called a Markoff number.

- First introduced by A. Markoff in 1879 in constructing rational approximations by continued fraction expansions

Markoff Triples - What Are They?

A Markoff triple (x, y, z) is a non-negative integer triple satisfying the Markoff equation

$$
\mathcal{M}: x^{2}+y^{2}+z^{2}=3 x y z
$$

A coordinate of a triple is called a Markoff number.

- First introduced by A. Markoff in 1879 in constructing rational approximations by continued fraction expansions
- Zagier (1982) showed that the number of Markoff triples with $x \leq y \leq z \leq T$ as $T \rightarrow \infty$ grows like

$$
\begin{aligned}
C(\log (T))^{2}+ & O\left(\log (T) \log (\log (T))^{2}\right) \\
\text { with } C & \approx 0.180717047
\end{aligned}
$$

Orbit Structure of Markoff Triples

There are three involutions acting on $\mathcal{M}(\mathbb{Z})$ (Vieta moves):

$$
\begin{aligned}
R_{1}(x, y, z)= & (3 y z-x, y, z), \quad R_{2}(x, y, z)=(x, 3 x z-y, z), \\
& R_{3}(x, y, z)=(x, y, 3 x y-z)
\end{aligned}
$$

Orbit Structure of Markoff Triples

There are three involutions acting on $\mathcal{M}(\mathbb{Z})$ (Vieta moves):

$$
\begin{aligned}
R_{1}(x, y, z)= & (3 y z-x, y, z), \quad R_{2}(x, y, z)=(x, 3 x z-y, z), \\
& R_{3}(x, y, z)=(x, y, 3 x y-z)
\end{aligned}
$$

Markoff showed that under the action of the $R_{1}, R_{2}, R_{3}, \mathcal{M}(\mathbb{Z})$ consists of two orbits, one "small" (solely ($0,0,0$)) and one "large" (generated by $(1,1,1)$)

Orbit Structure of Markoff Triples

There are three involutions acting on $\mathcal{M}(\mathbb{Z})$ (Vieta moves):

$$
\begin{aligned}
R_{1}(x, y, z)= & (3 y z-x, y, z), \quad R_{2}(x, y, z)=(x, 3 x z-y, z), \\
& R_{3}(x, y, z)=(x, y, 3 x y-z)
\end{aligned}
$$

Markoff showed that under the action of the $R_{1}, R_{2}, R_{3}, \mathcal{M}(\mathbb{Z})$ consists of two orbits, one "small" (solely ($0,0,0$)) and one "large" (generated by $(1,1,1)$)

$$
(1,1,1) \frac{R_{3}}{(1,1,2) \frac{R_{2}}{-}(1,5,2) \frac{R_{3}}{R_{1}}(1,5,13) \frac{\frac{R_{2}}{R_{1}}(1,34,13)}{}(194,5,13) _\cdots} \begin{aligned}
& R_{1} \\
& R_{2} \\
& \hline
\end{aligned}(29,169,2) _\cdots:
$$

Markoff Graph mod p

Consider the graph \mathcal{G}_{p} where vertices are given by non-($0,0,0$) solutions to $\mathcal{M}\left(\mathbb{F}_{p}\right)$ and an edge exists between two vertices if they are related by a Vieta involution.

Figure: The Markoff mod- p graphs G_{p} for $p=3,5$, and 7 .

Markoff Graph mod p

Consider the graph \mathcal{G}_{p} where vertices are given by non- $(0,0,0)$ solutions to $\mathcal{M}\left(\mathbb{F}_{p}\right)$ and an edge exists between two vertices if they are related by a Vieta involution.

Figure: The Markoff mod- p graphs G_{p} for $p=3,5$, and 7 .

Strong Approximation for \mathcal{G}_{p}

Conjecture (Strong Approximation Conjecture, Baragar (1991))

The projection map $\pi_{p}: \mathcal{M}(\mathbb{Z}) \rightarrow \mathcal{G}_{p}$ is surjective, or equivalently, the Markoff mod p graphs are connected for all primes p.

Strong Approximation for \mathcal{G}_{p}

Conjecture (Strong Approximation Conjecture, Baragar (1991))

The projection map $\pi_{p}: \mathcal{M}(\mathbb{Z}) \rightarrow \mathcal{G}_{p}$ is surjective, or equivalently, the Markoff mod p graphs are connected for all primes p.

Theorem (Bourgain-Gamburd-Sarnak (2016))

If \mathcal{B} is the set of primes p for which strong approximation fails, then

$$
|\mathcal{B} \cap[0, T]|<_{\varepsilon} T^{\varepsilon} \text { for any } \varepsilon>0
$$

Strong Approximation for \mathcal{G}_{p}

Conjecture (Strong Approximation Conjecture, Baragar (1991))

The projection map $\pi_{p}: \mathcal{M}(\mathbb{Z}) \rightarrow \mathcal{G}_{p}$ is surjective, or equivalently, the Markoff mod p graphs are connected for all primes p.

Theorem (Bourgain-Gamburd-Sarnak (2016))

If \mathcal{B} is the set of primes p for which strong approximation fails, then

$$
|\mathcal{B} \cap[0, T]|<_{\varepsilon} T^{\varepsilon} \text { for any } \varepsilon>0
$$

Theorem (Chen (2022))

There exists a prime p_{0} such that for all $p \geq p_{0}, \mathcal{G}_{p}$ is connected.

What is Known About Connectivity of \mathcal{G}_{p} and p_{0} ?

- Strong Approximation Conjecture is equivalent to $p_{0}=2$

What is Known About Connectivity of \mathcal{G}_{p} and p_{0} ?

- Strong Approximation Conjecture is equivalent to $p_{0}=2$

■ Chen (2022) showed that the size of any connected component of \mathcal{G}_{p} is divisible by p (strengthened to $4 p$)

What is Known About Connectivity of \mathcal{G}_{p} and p_{0} ?

- Strong Approximation Conjecture is equivalent to $p_{0}=2$

■ Chen (2022) showed that the size of any connected component of \mathcal{G}_{p} is divisible by p (strengthened to $4 p$)

- de Courcy-Ireland and Lee (2020) showed that \mathcal{G}_{p} is connected for $p \leq 3000$

What is Known About Connectivity of \mathcal{G}_{p} and p_{0} ?

- Strong Approximation Conjecture is equivalent to $p_{0}=2$

■ Chen (2022) showed that the size of any connected component of \mathcal{G}_{p} is divisible by p (strengthened to $4 p$)

- de Courcy-Ireland and Lee (2020) showed that \mathcal{G}_{p} is connected for $p \leq 3000$
■ Brown (2023/24) verified connectivity for $p \leq 1,000,000$ (to be talked about later today)

What is Known About Connectivity of \mathcal{G}_{p} and p_{0} ?

- Strong Approximation Conjecture is equivalent to $p_{0}=2$

■ Chen (2022) showed that the size of any connected component of \mathcal{G}_{p} is divisible by p (strengthened to $4 p$)

- de Courcy-Ireland and Lee (2020) showed that \mathcal{G}_{p} is connected for $p \leq 3000$
- Brown (2023/24) verified connectivity for $p \leq 1,000,000$ (to be talked about later today)
- Eddy-Fuchs-L.-Martin-Tripeny (2023) showed that $p_{0} \leq 3.448 \times 10^{392}$ (to be talked about now)

What is Known About Connectivity of \mathcal{G}_{p} and p_{0} ?

- Strong Approximation Conjecture is equivalent to $p_{0}=2$

■ Chen (2022) showed that the size of any connected component of \mathcal{G}_{p} is divisible by p (strengthened to $4 p$)

- de Courcy-Ireland and Lee (2020) showed that \mathcal{G}_{p} is connected for $p \leq 3000$
- Brown (2023/24) verified connectivity for $p \leq 1,000,000$ (to be talked about later today)
- Eddy-Fuchs-L.-Martin-Tripeny (2023) showed that $p_{0} \leq 3.448 \times 10^{392}$ (to be talked about now)

The window from 10^{6} to 10^{392} has yet to be filled in!

A Preliminary Bound

Proposition (Eddy-Fuchs-L.-Martin-Tripeny ('23))
\mathcal{G}_{p} is connected for all primes $p>10^{532}$.

A Preliminary Bound

Proposition (Eddy-Fuchs-L.-Martin-Tripeny ('23))
\mathcal{G}_{p} is connected for all primes $p>10^{532}$.
We will outline how this result is obtained to illuminate the general strategy for our stronger result

Parametrizing Markoff Triples

- A triple $(a, b, c) \in \mathbb{F}_{p}$ with $a \neq 0, \pm \frac{2}{3}$ solves $x^{2}+y^{2}+z^{2}=3 x y z$ if and only if it is of the form

$$
\left(r+r^{-1}, \frac{\left(r+r^{-1}\right)\left(s+s^{-1}\right)}{r-r^{-1}}, \frac{\left(r+r^{-1}\right)\left(r s+r^{-1} s^{-1}\right)}{r-r^{-1}}\right)
$$

for some $r, s \in \mathbb{F}_{p^{2}}$.

Parametrizing Markoff Triples

- A triple $(a, b, c) \in \mathbb{F}_{p}$ with $a \neq 0, \pm \frac{2}{3}$ solves $x^{2}+y^{2}+z^{2}=3 x y z$ if and only if it is of the form

$$
\left(r+r^{-1}, \frac{\left(r+r^{-1}\right)\left(s+s^{-1}\right)}{r-r^{-1}}, \frac{\left(r+r^{-1}\right)\left(r s+r^{-1} s^{-1}\right)}{r-r^{-1}}\right)
$$

for some $r, s \in \mathbb{F}_{p^{2}}^{\times}$.

- The orbit of this triple under R_{2} and R_{3} consists precisely of triples of the form
$\left(r+r^{-1}, \frac{\left(r+r^{-1}\right)\left(r^{2 n} s+r^{-2 n} s^{-1}\right)}{r-r^{-1}}, \frac{\left(r+r^{-1}\right)\left(r^{2 n \pm 1} s+r^{2 n \pm 1} s^{-1}\right)}{r-r^{-1}}\right)$
for some $n \in \mathbb{Z}$

Order of a Triple and the Cage

- The Order of Markoff mod p triple (a, b, c), denoted $\operatorname{Ord}((a, b, c))$, is

$$
\max \left(\operatorname{ord}_{p}(a), \operatorname{ord}_{p}(b), \operatorname{ord}_{p}(c)\right)
$$

where $\operatorname{ord}_{p}(a)$ is the multiplicative order of r in $\mathbb{F}_{p^{2}}^{\times}$and $a=r+r^{-1}$

Order of a Triple and the Cage

- The Order of Markoff mod p triple (a, b, c), denoted $\operatorname{Ord}((a, b, c))$, is

$$
\max \left(\operatorname{ord}_{p}(a), \operatorname{ord}_{p}(b), \operatorname{ord}_{p}(c)\right)
$$

where $\operatorname{ord}_{p}(a)$ is the multiplicative order of r in $\mathbb{F}_{p^{2}}^{\times}$and $a=r+r^{-1}$

- Define the Cage \mathcal{C}_{p} to be the connected component in \mathcal{G}_{p} of triples of maximal order

Order of a Triple and the Cage

- The Order of Markoff mod p triple (a, b, c), denoted $\operatorname{Ord}((a, b, c))$, is

$$
\max \left(\operatorname{ord}_{p}(a), \operatorname{ord}_{p}(b), \operatorname{ord}_{p}(c)\right)
$$

where $\operatorname{ord}_{p}(a)$ is the multiplicative order of r in $\mathbb{F}_{p^{2}}^{\times}$and $a=r+r^{-1}$

- Define the Cage \mathcal{C}_{p} to be the connected component in \mathcal{G}_{p} of triples of maximal order
To show connectivity, it suffices to show $\mathcal{G}_{p} \backslash \mathcal{C}_{p}$ is empty (which by Chen has size divisible by p)

Connectivity Proof Sketch

■ Suppose (a, b, c) is not in the Cage and is of maximal Order d among all non-Cage elements, with a the coordinate of order d

Connectivity Proof Sketch

■ Suppose (a, b, c) is not in the Cage and is of maximal Order d among all non-Cage elements, with a the coordinate of order d

- This triple is connected to those whose other entries are of the form $\frac{\left(r+r^{-1}\right)\left(s r^{n}+\left(s r^{n}\right)^{-1}\right)}{r-r^{-1}}$ for some n

Connectivity Proof Sketch

- Suppose (a, b, c) is not in the Cage and is of maximal Order d among all non-Cage elements, with a the coordinate of order d
- This triple is connected to those whose other entries are of the form $\frac{\left(r+r^{-1}\right)\left(s r^{n}+\left(s r^{n}\right)^{-1}\right)}{r-r^{-1}}$ for some n
- Since d is maximal, the order of $\frac{\left(r+r^{-1}\right)\left(s r^{n}+\left(s r^{n}\right)^{-1}\right)}{r-r^{-1}}=f+f^{-1}$ (call it d^{\prime}) must satisfy $d^{\prime} \leq d, d^{\prime} \mid p \pm 1$

Connectivity Proof Sketch

- Suppose (a, b, c) is not in the Cage and is of maximal Order d among all non-Cage elements, with a the coordinate of order d
- This triple is connected to those whose other entries are of the form $\frac{\left(r+r^{-1}\right)\left(s r^{n}+\left(s r^{n}\right)^{-1}\right)}{r-r^{-1}}$ for some n
- Since d is maximal, the order of $\frac{\left(r+r^{-1}\right)\left(s r^{n}+\left(s r^{n}\right)^{-1}\right)}{r-r^{-1}}=f+f^{-1}$ (call it d^{\prime}) must satisfy $d^{\prime} \leq d, d^{\prime} \mid p \pm 1$
- So our aim is to bound the number of possible exponents n for which $\operatorname{ord}_{p}\left(\frac{\left(r+r^{-1}\right)\left(s r^{n}+\left(s r^{n}\right)^{-1}\right)}{r-r^{-1}}\right)=d^{\prime}$ divides d

Bounding Solutions

Lemma (Eddy-Fuchs-L.-Martin-Tripeny ('23))
If $r \in \mathbb{F}_{p^{2}}^{\times}$has order $t>2$, then the number of congruence classes $n(\bmod t)$ for which $\operatorname{ord}_{p}\left(\left(r+r^{-1}\right)\left(s r^{n}+\left(s r^{n}\right)^{-1}\right) /\left(r-r^{-1}\right)\right)$ divides d is at most $\frac{3}{2} \max \left((6 t d)^{1 / 3}, 4 t d / p\right)$.

Bounding Solutions

Lemma (Eddy-Fuchs-L.-Martin-Tripeny ('23))

If $r \in \mathbb{F}_{p^{2}}^{\times}$has order $t>2$, then the number of congruence classes $n(\bmod t)$ for which $\operatorname{ord}_{p}\left(\left(r+r^{-1}\right)\left(s r^{n}+\left(s r^{n}\right)^{-1}\right) /\left(r-r^{-1}\right)\right)$ divides d is at most $\frac{3}{2} \max \left((6 t d)^{1 / 3}, 4 t d / p\right)$.

If we consider d to be the largest order of any element not in the cage and \mathcal{T}_{d} to be the number of divisors of $p \pm 1$ which do not exceed d, then

Bounding Solutions

Lemma (Eddy-Fuchs-L.-Martin-Tripeny ('23))

If $r \in \mathbb{F}_{p^{2}}^{\times}$has order $t>2$, then the number of congruence classes $n(\bmod t)$ for which $\operatorname{ord}_{p}\left(\left(r+r^{-1}\right)\left(s r^{n}+\left(s r^{n}\right)^{-1}\right) /\left(r-r^{-1}\right)\right)$ divides d is at most $\frac{3}{2} \max \left((6 t d)^{1 / 3}, 4 t d / p\right)$.

If we consider d to be the largest order of any element not in the cage and \mathcal{T}_{d} to be the number of divisors of $p \pm 1$ which do not exceed d, then

$$
d \leq \sum_{d^{\prime} \in \mathcal{T}_{d}} \frac{3}{2} \max \left(\left(6 d d^{\prime}\right)^{1 / 3}, \frac{4 d d^{\prime}}{p}\right)<\frac{3 T_{d}}{2} \max \left(\left(6 d^{2}\right)^{1 / 3}, \frac{4 d^{2}}{p}\right)
$$

Bounding Solutions

Lemma (Eddy-Fuchs-L.-Martin-Tripeny ('23))

If $r \in \mathbb{F}_{p^{2}}^{\times}$has order $t>2$, then the number of congruence classes $n(\bmod t)$ for which $\operatorname{ord}_{p}\left(\left(r+r^{-1}\right)\left(s r^{n}+\left(s r^{n}\right)^{-1}\right) /\left(r-r^{-1}\right)\right)$ divides d is at most $\frac{3}{2} \max \left((6 t d)^{1 / 3}, 4 t d / p\right)$.

If we consider d to be the largest order of any element not in the cage and \mathcal{T}_{d} to be the number of divisors of $p \pm 1$ which do not exceed d, then

$$
d \leq \sum_{d^{\prime} \in \mathcal{T}_{d}} \frac{3}{2} \max \left(\left(6 d d^{\prime}\right)^{1 / 3}, \frac{4 d d^{\prime}}{p}\right)<\frac{3 T_{d}}{2} \max \left(\left(6 d^{2}\right)^{1 / 3}, \frac{4 d^{2}}{p}\right)
$$

Considering both cases separately and rearranging yields...

First Connectivity Criterion

Proposition (Eddy-Fuchs-L.-Martin-Tripeny ('23))

Let $\tau_{d}(n)$ denote the number of divisors of n that are $\leq d$. For d dividing $p-1$ or $p+1$, let $T_{d}=\tau_{d}(p-1)+\tau_{d}(p+1)$. If no such divisor satisfies either inequality

$$
\frac{2 \sqrt{2 p}}{T_{d}}<d<\frac{81 T_{d}^{3}}{4} \quad \text { or } \quad \frac{p}{6 T_{d}}<d<\frac{8 \sqrt{p}(p \pm 1) \tau(p \pm 1)}{\phi(p \pm 1)}
$$

(where the \pm is + when $d \mid p+1$ and - if $d \mid p-1$), then \mathcal{G}_{p} is connected.

First Connectivity Criterion

Proposition (Eddy-Fuchs-L.-Martin-Tripeny ('23))

Let $\tau_{d}(n)$ denote the number of divisors of n that are $\leq d$. For d dividing $p-1$ or $p+1$, let $T_{d}=\tau_{d}(p-1)+\tau_{d}(p+1)$. If no such divisor satisfies either inequality

$$
\frac{2 \sqrt{2 p}}{T_{d}}<d<\frac{81 T_{d}^{3}}{4} \quad \text { or } \quad \frac{p}{6 T_{d}}<d<\frac{8 \sqrt{p}(p \pm 1) \tau(p \pm 1)}{\phi(p \pm 1)}
$$

(where the \pm is + when $d \mid p+1$ and - if $d \mid p-1$), then \mathcal{G}_{p} is connected.

Applying standard bounds for τ and ϕ yields our 10^{532} bound

Maximal Divisors

Definition

For a natural number n and real ℓ, let $\mathcal{M}_{\ell}(n)$ denote the set of divisors d of n less than or equal to ℓ such that no other divisor d^{\prime} of n less than or equal to ℓ divides d

As ℓ increases, $\mathcal{M}_{\ell}(n)$ is constant between any two consecutive divisors of n, so we only need to check $\mathcal{M}_{d}(n)$ at $d \mid n$

Maximal Divisors

Definition

For a natural number n and real ℓ, let $\mathcal{M}_{\ell}(n)$ denote the set of divisors d of n less than or equal to ℓ such that no other divisor d^{\prime} of n less than or equal to ℓ divides d

As ℓ increases, $\mathcal{M}_{\ell}(n)$ is constant between any two consecutive divisors of n, so we only need to check $\mathcal{M}_{d}(n)$ at $d \mid n$
\star In our previous sum, we can replace all divisors of $p \pm 1$ less than d, \mathcal{T}_{d}, with $\mathcal{M}_{d}(p \pm 1)$ to lessen the overcounting of solutions \star

Updated Connectivity Criterion using Maximal Divisors

Theorem (Eddy-Fuchs-L.-Martin-Tripeny ('23))

For dividing $p-1$ or $p+1$, let $M_{d}=\left|\mathcal{M}_{d}(p-1)\right|+\left|\mathcal{M}_{d}(p+1)\right|$. If no such divisor satisfies either inequality

$$
\frac{2 \sqrt{2 p}}{M_{d}}<d<\frac{81 M_{d}^{3}}{4} \quad \text { or } \quad \frac{p}{6 M_{d}}<d<\frac{8 \sqrt{p}(p \pm 1) \tau(p \pm 1)}{\phi(p \pm 1)}
$$

(where the \pm is determined by whether d divides $p-1$ or $p+1$), then \mathcal{G}_{p} is connected.

Updated Connectivity Criterion using Maximal Divisors

Theorem (Eddy-Fuchs-L.-Martin-Tripeny ('23))

For d dividing $p-1$ or $p+1$, let $M_{d}=\left|\mathcal{M}_{d}(p-1)\right|+\left|\mathcal{M}_{d}(p+1)\right|$. If no such divisor satisfies either inequality

$$
\frac{2 \sqrt{2 p}}{M_{d}}<d<\frac{81 M_{d}^{3}}{4} \quad \text { or } \quad \frac{p}{6 M_{d}}<d<\frac{8 \sqrt{p}(p \pm 1) \tau(p \pm 1)}{\phi(p \pm 1)}
$$

(where the \pm is determined by whether d divides $p-1$ or $p+1$), then \mathcal{G}_{p} is connected.

The first few primes for which this theorem guarantees connectivity of \mathcal{G}_{p} are $p=3,7,101$ and $1,327,363$ (a gap on the order of 10^{6})

A Bound on Maximal Divisors

Theorem (Eddy-Fuchs-L.-Martin-Tripeny ('23))

For any $\varepsilon>0$, if $\alpha \in[\varepsilon, 1-\varepsilon]$ then
$\log \left|\mathcal{M}_{n^{\alpha}}(n)\right|=\log \left(\frac{1}{\alpha^{\alpha}(1-\alpha)^{1-\alpha}}\right) \frac{\log n}{\log \log n}+O\left(\frac{\log n}{(\log \log n)^{2}}\right)$.
The implied constant depends only on ε.

A Bound on Maximal Divisors

Theorem (Eddy-Fuchs-L.-Martin-Tripeny ('23))

For any $\varepsilon>0$, if $\alpha \in[\varepsilon, 1-\varepsilon]$ then
$\log \left|\mathcal{M}_{n^{\alpha}}(n)\right|=\log \left(\frac{1}{\alpha^{\alpha}(1-\alpha)^{1-\alpha}}\right) \frac{\log n}{\log \log n}+O\left(\frac{\log n}{(\log \log n)^{2}}\right)$.
The implied constant depends only on ε.
We can now apply this to our connectivity criterion to deduce the following...

A Stronger Bound on p_{0} from Maximal Divisors

Theorem

\mathcal{G}_{p} is connected for all primes

$$
p>863 \# 53 \# 13 \# 7 \# 5 \# 3^{3} 2^{5} \approx 3.448 \cdot 10^{392}
$$

where $n \#$ denotes the product of primes less than or equal to n.

A Stronger Bound on p_{0} from Maximal Divisors

Theorem

\mathcal{G}_{p} is connected for all primes

$$
p>863 \# 53 \# 13 \# 7 \# 5 \# 3^{3} 2^{5} \approx 3.448 \cdot 10^{392}
$$

where $n \#$ denotes the product of primes less than or equal to n.
$p=863 \# 53 \# 13 \# 7 \# 5 \# 3^{3} 2^{5}-1471$ is the largest prime for which we do not know if \mathcal{G}_{p} is connected.

Testing for Smaller Values of 10^{n}

n	$q_{10000}\left(10^{n}\right)$	$r_{10000}\left(10^{n}\right)$
8	20.22%	38.12%
9	49.04%	67.46%
10	76.41%	87.05%
11	90.78%	95.33%
12	97.10%	98.29%
13	98.65%	99.11%
14	99.44%	99.52%
15	99.74%	99.83%
16	99.88%	99.88%
17	99.93%	99.95%
18	99.97%	100%
19	99.97%	99.97%
20	99.97%	100%
21	99.99%	99.99%

n	$q_{10000}\left(10^{n}\right)$	$r_{10000}\left(10^{n}\right)$
22	100%	100%
23	100%	100%
24	100%	100%
25	100%	100%
26	100%	100%
27	100%	100%
28	100%	100%
29	100%	100%
30	100%	100%
31	100%	100%
32	100%	100%
33	100%	100%
34	100%	100%
35	100%	100%

$q_{m}\left(10^{n}\right)=$ the percentage of the first m primes after 10^{n} for which the Connectivity Criterion guarantees connectivity of \mathcal{G}_{p} $r_{m}\left(10^{n}\right)=$ the percentage of m random primes between 10^{n} and 10^{n+1} for which the Connectivity Criterion guarantees connectivity of \mathcal{G}_{p}.

Thank You!

Plot of $\left|\mathcal{M}_{d_{i}}(n)\right|$ as i ranges from 1 to the number of divisors of $n=323232323232323232$

