Connectivity of Markoff mod *p* Graphs and Maximal Divisors

Matthew Litman Joint work J. Eddy, E. Fuchs, D. Martin, & N. Tripeny

Joint Mathematics Meetings AMS Special Session on Recent Developments on Markoff Triples January 4th, 2024

Litman - UC Davis

1 Introduce \mathcal{G}_p and a Conjecture on Markoff mod p Connectivity

Litman - UC Davis

Introduce G_p and a Conjecture on Markoff mod p Connectivity
A Lower Bound for Connectivity of G_p

Litman - UC Davis

- **1** Introduce \mathcal{G}_p and a Conjecture on Markoff mod p Connectivity
- **2** A Lower Bound for Connectivity of \mathcal{G}_p
- 3 Introduce Maximal Divisors $M_d(n)$

Litman - UC Davis

- **1** Introduce \mathcal{G}_p and a Conjecture on Markoff mod p Connectivity
- **2** A Lower Bound for Connectivity of \mathcal{G}_p
- 3 Introduce Maximal Divisors $M_d(n)$
- 4 A Better Lower Bound from $M_d(n)$

Litman - UC Davis

Markoff Triples – What Are They?

A *Markoff triple* (x, y, z) is a non-negative integer triple satisfying the *Markoff equation*

$$\mathcal{M}: x^2 + y^2 + z^2 = 3xyz$$

A coordinate of a triple is called a *Markoff number*.

Litman - UC Davis

Markoff Triples – What Are They?

A *Markoff triple* (x, y, z) is a non-negative integer triple satisfying the *Markoff equation*

$$\mathcal{M}: x^2 + y^2 + z^2 = 3xyz$$

A coordinate of a triple is called a *Markoff number*.

 First introduced by A. Markoff in 1879 in constructing rational approximations by continued fraction expansions

Litman - UC Davis

Markoff Triples – What Are They?

A *Markoff triple* (x, y, z) is a non-negative integer triple satisfying the *Markoff equation*

$$\mathcal{M}: x^2 + y^2 + z^2 = 3xyz$$

A coordinate of a triple is called a *Markoff number*.

- First introduced by A. Markoff in 1879 in constructing rational approximations by continued fraction expansions
- Zagier (1982) showed that the number of Markoff triples with $x \le y \le z \le T$ as $T \to \infty$ grows like

$$C(\log(T))^2 + O(\log(T)\log(\log(T))^2)$$

with $C \approx 0.180717047$

Litman - UC Davis

Orbit Structure of Markoff Triples

There are three involutions acting on $\mathcal{M}(\mathbb{Z})$ (Vieta moves):

$$R_1(x, y, z) = (3yz - x, y, z), \quad R_2(x, y, z) = (x, 3xz - y, z),$$
$$R_3(x, y, z) = (x, y, 3xy - z)$$

Litman – UC Davis

Orbit Structure of Markoff Triples

There are three involutions acting on $\mathcal{M}(\mathbb{Z})$ (Vieta moves):

$$R_1(x, y, z) = (3yz - x, y, z), \quad R_2(x, y, z) = (x, 3xz - y, z),$$
$$R_3(x, y, z) = (x, y, 3xy - z)$$

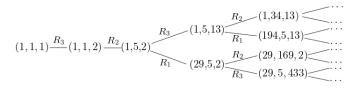
Markoff showed that under the action of the $R_1, R_2, R_3, \mathcal{M}(\mathbb{Z})$ consists of two orbits, one "small" (solely (0, 0, 0)) and one "large" (generated by (1, 1, 1))

Orbit Structure of Markoff Triples

There are three involutions acting on $\mathcal{M}(\mathbb{Z})$ (Vieta moves):

$$R_1(x, y, z) = (3yz - x, y, z), \quad R_2(x, y, z) = (x, 3xz - y, z),$$
$$R_3(x, y, z) = (x, y, 3xy - z)$$

Markoff showed that under the action of the $R_1, R_2, R_3, \mathcal{M}(\mathbb{Z})$ consists of two orbits, one "small" (solely (0, 0, 0)) and one "large" (generated by (1, 1, 1))



Litman - UC Davis

Markoff Graph mod p

Consider the graph \mathcal{G}_p where vertices are given by non-(0,0,0) solutions to $\mathcal{M}(\mathbb{F}_p)$ and an edge exists between two vertices if they are related by a Vieta involution.

Figure: The Markoff mod-p graphs G_p for p = 3, 5, and 7.

Litman - UC Davis

Markoff Graph mod p

Consider the graph \mathcal{G}_p where vertices are given by non-(0,0,0) solutions to $\mathcal{M}(\mathbb{F}_p)$ and an edge exists between two vertices if they are related by a Vieta involution.

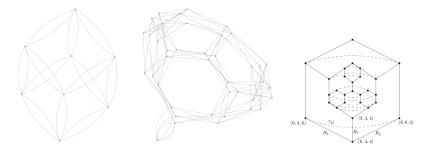


Figure: The Markoff mod-p graphs G_p for p = 3, 5, and 7.

Litman - UC Davis

Strong Approximation for \mathcal{G}_{p}

Conjecture (Strong Approximation Conjecture, Baragar (1991))

The projection map $\pi_p : \mathcal{M}(\mathbb{Z}) \to \mathcal{G}_p$ is surjective, or equivalently, the Markoff mod p graphs are connected for all primes p.

Litman - UC Davis

Strong Approximation for \mathcal{G}_p

Conjecture (Strong Approximation Conjecture, Baragar (1991))

The projection map $\pi_p : \mathcal{M}(\mathbb{Z}) \to \mathcal{G}_p$ is surjective, or equivalently, the Markoff mod p graphs are connected for all primes p.

Theorem (Bourgain-Gamburd-Sarnak (2016))

If $\mathcal B$ is the set of primes p for which strong approximation fails, then

 $|\mathcal{B}\cap [0,T]|\ll_{\varepsilon} T^{\varepsilon} \text{ for any } \varepsilon>0.$

Litman - UC Davis

Strong Approximation for \mathcal{G}_p

Conjecture (Strong Approximation Conjecture, Baragar (1991))

The projection map $\pi_p : \mathcal{M}(\mathbb{Z}) \to \mathcal{G}_p$ is surjective, or equivalently, the Markoff mod p graphs are connected for all primes p.

Theorem (Bourgain-Gamburd-Sarnak (2016))

If $\mathcal B$ is the set of primes p for which strong approximation fails, then

 $|\mathcal{B} \cap [0, T]| \ll_{\varepsilon} T^{\varepsilon}$ for any $\varepsilon > 0$.

Theorem (Chen (2022))

There exists a prime p_0 such that for all $p \ge p_0$, \mathcal{G}_p is connected.

Litman - UC Davis

• Strong Approximation Conjecture is equivalent to $p_0 = 2$

Litman – UC Davis

- Strong Approximation Conjecture is equivalent to $p_0 = 2$
- Chen (2022) showed that the size of any connected component of G_p is divisible by p (strengthened to 4p)

Litman - UC Davis

- Strong Approximation Conjecture is equivalent to $p_0 = 2$
- Chen (2022) showed that the size of any connected component of G_p is divisible by p (strengthened to 4p)
- de Courcy-Ireland and Lee (2020) showed that \mathcal{G}_p is connected for $p \leq 3000$

Litman - UC Davis

- Strong Approximation Conjecture is equivalent to $p_0 = 2$
- Chen (2022) showed that the size of any connected component of G_p is divisible by p (strengthened to 4p)
- de Courcy-Ireland and Lee (2020) showed that \mathcal{G}_p is connected for $p \leq 3000$
- Brown (2023/24) verified connectivity for p ≤ 1,000,000 (to be talked about later today)

Litman - UC Davis

- Strong Approximation Conjecture is equivalent to $p_0 = 2$
- Chen (2022) showed that the size of any connected component of G_p is divisible by p (strengthened to 4p)
- de Courcy-Ireland and Lee (2020) showed that \mathcal{G}_p is connected for $p \leq 3000$
- Brown (2023/24) verified connectivity for p ≤ 1,000,000 (to be talked about later today)
- Eddy–Fuchs–L.–Martin–Tripeny (2023) showed that $p_0 \leq 3.448 \times 10^{392}$ (to be talked about now)

Litman - UC Davis

- Strong Approximation Conjecture is equivalent to $p_0 = 2$
- Chen (2022) showed that the size of any connected component of G_p is divisible by p (strengthened to 4p)
- de Courcy-Ireland and Lee (2020) showed that \mathcal{G}_p is connected for $p \leq 3000$
- Brown (2023/24) verified connectivity for p ≤ 1,000,000 (to be talked about later today)
- Eddy–Fuchs–L.–Martin–Tripeny (2023) showed that $p_0 \leq 3.448 \times 10^{392}$ (to be talked about now)

The window from 10^6 to 10^{392} has yet to be filled in!

Litman - UC Davis

A Preliminary Bound

Proposition (Eddy–Fuchs–L.–Martin–Tripeny ('23))

 \mathcal{G}_p is connected for all primes $p > 10^{532}$.

Litman - UC Davis

A Preliminary Bound

Proposition (Eddy–Fuchs–L.–Martin–Tripeny ('23))

 \mathcal{G}_p is connected for all primes $p > 10^{532}$.

We will outline how this result is obtained to illuminate the general strategy for our stronger result

Litman – UC Davis

Parametrizing Markoff Triples

- A triple $(a, b, c) \in \mathbb{F}_p$ with $a \neq 0, \pm \frac{2}{3}$ solves $x^2 + y^2 + z^2 = 3xyz$ if and only if it is of the form

$$\left(r+r^{-1}, \frac{(r+r^{-1})(s+s^{-1})}{r-r^{-1}}, \frac{(r+r^{-1})(rs+r^{-1}s^{-1})}{r-r^{-1}}\right)$$

for some $r, s \in \mathbb{F}_{p^2}^{\times}$.

Litman - UC Davis

Parametrizing Markoff Triples

- A triple $(a, b, c) \in \mathbb{F}_p$ with $a \neq 0, \pm \frac{2}{3}$ solves $x^2 + y^2 + z^2 = 3xyz$ if and only if it is of the form

$$\left(r+r^{-1}, \frac{(r+r^{-1})(s+s^{-1})}{r-r^{-1}}, \frac{(r+r^{-1})(rs+r^{-1}s^{-1})}{r-r^{-1}}\right)$$

for some $r, s \in \mathbb{F}_{p^2}^{\times}$. – The orbit of this triple under R_2 and R_3 consists precisely of triples of the form

$$\left(r+r^{-1}, \frac{(r+r^{-1})(r^{2n}s+r^{-2n}s^{-1})}{r-r^{-1}}, \frac{(r+r^{-1})(r^{2n\pm1}s+r^{2n\pm1}s^{-1})}{r-r^{-1}}\right)$$

for some $n \in \mathbb{Z}$

Litman - UC Davis

Order of a Triple and the Cage

The Order of Markoff mod p triple (a, b, c), denoted Ord((a, b, c)), is

 $\max(\mathrm{ord}_p(a),\mathrm{ord}_p(b),\mathrm{ord}_p(c))$

where $\operatorname{ord}_p(a)$ is the multiplicative order of r in $\mathbb{F}_{p^2}^{\times}$ and $a = r + r^{-1}$

Litman - UC Davis

Order of a Triple and the Cage

The Order of Markoff mod p triple (a, b, c), denoted Ord((a, b, c)), is

 $\max(\mathrm{ord}_p(a),\mathrm{ord}_p(b),\mathrm{ord}_p(c))$

where $\operatorname{ord}_p(a)$ is the multiplicative order of r in $\mathbb{F}_{p^2}^{\times}$ and $a = r + r^{-1}$

 Define the Cage C_p to be the connected component in G_p of triples of maximal order

Litman - UC Davis

Order of a Triple and the Cage

The Order of Markoff mod p triple (a, b, c), denoted Ord((a, b, c)), is

 $\max(\mathrm{ord}_p(a),\mathrm{ord}_p(b),\mathrm{ord}_p(c))$

where $\operatorname{ord}_p(a)$ is the multiplicative order of r in $\mathbb{F}_{p^2}^{\times}$ and $a = r + r^{-1}$

 Define the Cage C_p to be the connected component in G_p of triples of maximal order

To show connectivity, it suffices to show $\mathcal{G}_p \setminus \mathcal{C}_p$ is empty (which by Chen has size divisible by p)

Suppose (a, b, c) is not in the Cage and is of maximal Order d among all non-Cage elements, with a the coordinate of order d

Litman - UC Davis

- Suppose (a, b, c) is not in the Cage and is of maximal Order d among all non-Cage elements, with a the coordinate of order d
- This triple is connected to those whose other entries are of the form $\frac{(r+r^{-1})(sr^n+(sr^n)^{-1})}{r-r^{-1}}$ for some *n*

Litman - UC Davis

- Suppose (a, b, c) is not in the Cage and is of maximal Order d among all non-Cage elements, with a the coordinate of order d
- This triple is connected to those whose other entries are of the form $\frac{(r+r^{-1})(sr^n+(sr^n)^{-1})}{r-r^{-1}}$ for some *n*
- Since d is maximal, the order of $\frac{(r+r^{-1})(sr^n+(sr^n)^{-1})}{r-r^{-1}} = f + f^{-1}$ (call it d') must satisfy $d' \le d$, $d'|p \pm 1$

Litman - UC Davis

- Suppose (a, b, c) is not in the Cage and is of maximal Order d among all non-Cage elements, with a the coordinate of order d
- Since d is maximal, the order of $\frac{(r+r^{-1})(sr^n+(sr^n)^{-1})}{r-r^{-1}} = f + f^{-1}$ (call it d') must satisfy $d' \le d$, $d'|p \pm 1$
- So our aim is to bound the number of possible exponents *n* for which $\operatorname{ord}_p(\frac{(r+r^{-1})(sr^n+(sr^n)^{-1})}{r-r^{-1}}) = d'$ divides *d*

Litman - UC Davis

Bounding Solutions

Lemma (Eddy–Fuchs–L.–Martin–Tripeny ('23))

If $r \in \mathbb{F}_{p^2}^{\times}$ has order t > 2, then the number of congruence classes $n \pmod{t}$ for which $\operatorname{ord}_p((r+r^{-1})(sr^n+(sr^n)^{-1})/(r-r^{-1}))$ divides d is at most $\frac{3}{2}\max((6td)^{1/3}, 4td/p)$.

Litman - UC Davis

Bounding Solutions

Lemma (Eddy–Fuchs–L.–Martin–Tripeny ('23))

If $r \in \mathbb{F}_{p^2}^{\times}$ has order t > 2, then the number of congruence classes $n \pmod{t}$ for which $\operatorname{ord}_p((r + r^{-1})(sr^n + (sr^n)^{-1})/(r - r^{-1}))$ divides d is at most $\frac{3}{2} \max((6td)^{1/3}, 4td/p)$.

If we consider d to be the largest order of any element not in the cage and T_d to be the number of divisors of $p \pm 1$ which do not exceed d, then

Litman - UC Davis

Bounding Solutions

Lemma (Eddy–Fuchs–L.–Martin–Tripeny ('23))

If $r \in \mathbb{F}_{p^2}^{\times}$ has order t > 2, then the number of congruence classes $n \pmod{t}$ for which $\operatorname{ord}_p((r+r^{-1})(sr^n+(sr^n)^{-1})/(r-r^{-1}))$ divides d is at most $\frac{3}{2}\max((6td)^{1/3}, 4td/p)$.

If we consider d to be the largest order of any element not in the cage and T_d to be the number of divisors of $p \pm 1$ which do not exceed d, then

$$d \leq \sum_{d' \in \mathcal{T}_d} \frac{3}{2} \max\left((6dd')^{1/3}, \frac{4dd'}{p} \right) < \frac{3T_d}{2} \max\left((6d^2)^{1/3}, \frac{4d^2}{p} \right).$$

Litman - UC Davis

Bounding Solutions

Lemma (Eddy–Fuchs–L.–Martin–Tripeny ('23))

If $r \in \mathbb{F}_{p^2}^{\times}$ has order t > 2, then the number of congruence classes $n \pmod{t}$ for which $\operatorname{ord}_p((r+r^{-1})(sr^n+(sr^n)^{-1})/(r-r^{-1}))$ divides d is at most $\frac{3}{2}\max((6td)^{1/3}, 4td/p)$.

If we consider d to be the largest order of any element not in the cage and T_d to be the number of divisors of $p \pm 1$ which do not exceed d, then

$$d \leq \sum_{d' \in \mathcal{T}_d} \frac{3}{2} \max\left((6dd')^{1/3}, \frac{4dd'}{p} \right) < \frac{3T_d}{2} \max\left((6d^2)^{1/3}, \frac{4d^2}{p} \right).$$

Considering both cases separately and rearranging yields...

Litman - UC Davis

First Connectivity Criterion

Proposition (Eddy–Fuchs–L.–Martin–Tripeny ('23))

Let $\tau_d(n)$ denote the number of divisors of n that are $\leq d$. For d dividing p - 1 or p + 1, let $T_d = \tau_d(p - 1) + \tau_d(p + 1)$. If no such divisor satisfies either inequality

$$\frac{2\sqrt{2p}}{T_d} < d < \frac{81T_d^3}{4} \quad \text{ or } \quad \frac{p}{6T_d} < d < \frac{8\sqrt{p}(p\pm 1)\tau(p\pm 1)}{\phi(p\pm 1)}$$

(where the \pm is + when d|p+1 and - if d|p-1), then \mathcal{G}_p is connected.

Litman - UC Davis

First Connectivity Criterion

Proposition (Eddy–Fuchs–L.–Martin–Tripeny ('23))

Let $\tau_d(n)$ denote the number of divisors of n that are $\leq d$. For d dividing p-1 or p+1, let $T_d = \tau_d(p-1) + \tau_d(p+1)$. If no such divisor satisfies either inequality

$$\frac{2\sqrt{2p}}{T_d} < d < \frac{81T_d^3}{4} \quad \text{or} \quad \frac{p}{6T_d} < d < \frac{8\sqrt{p}(p\pm 1)\tau(p\pm 1)}{\phi(p\pm 1)}$$

(where the \pm is + when d|p+1 and - if d|p-1), then \mathcal{G}_p is connected.

Applying standard bounds for τ and ϕ yields our 10^{532} bound

Litman - UC Davis

Maximal Divisors

Definition

For a natural number n and real ℓ , let $\mathcal{M}_{\ell}(n)$ denote the set of divisors d of n less than or equal to ℓ such that no other divisor d' of n less than or equal to ℓ divides d

As ℓ increases, $\mathcal{M}_{\ell}(n)$ is constant between any two consecutive divisors of n, so we only need to check $\mathcal{M}_d(n)$ at d|n

Litman - UC Davis

Maximal Divisors

Definition

For a natural number n and real ℓ , let $\mathcal{M}_{\ell}(n)$ denote the set of divisors d of n less than or equal to ℓ such that no other divisor d' of n less than or equal to ℓ divides d

As ℓ increases, $\mathcal{M}_{\ell}(n)$ is constant between any two consecutive divisors of n, so we only need to check $\mathcal{M}_d(n)$ at d|n

 \star In our previous sum, we can replace all divisors of $p \pm 1$ less than d, T_d , with $\mathcal{M}_d(p \pm 1)$ to lessen the overcounting of solutions \star

Litman - UC Davis

Updated Connectivity Criterion using Maximal Divisors

Theorem (Eddy–Fuchs–L.–Martin–Tripeny ('23))

For d dividing p-1 or p+1, let $M_d = |\mathcal{M}_d(p-1)| + |\mathcal{M}_d(p+1)|$. If no such divisor satisfies either inequality

$$\frac{2\sqrt{2p}}{M_d} < d < \frac{81M_d^3}{4} \quad \text{ or } \quad \frac{p}{6M_d} < d < \frac{8\sqrt{p}(p\pm 1)\tau(p\pm 1)}{\phi(p\pm 1)}$$

(where the \pm is determined by whether d divides p - 1 or p + 1), then \mathcal{G}_p is connected.

Litman - UC Davis

Updated Connectivity Criterion using Maximal Divisors

Theorem (Eddy–Fuchs–L.–Martin–Tripeny ('23))

For d dividing p-1 or p+1, let $M_d = |\mathcal{M}_d(p-1)| + |\mathcal{M}_d(p+1)|$. If no such divisor satisfies either inequality

$$\frac{2\sqrt{2p}}{M_d} < d < \frac{81M_d^3}{4} \quad \text{ or } \quad \frac{p}{6M_d} < d < \frac{8\sqrt{p}(p\pm 1)\tau(p\pm 1)}{\phi(p\pm 1)}$$

(where the \pm is determined by whether d divides p - 1 or p + 1), then \mathcal{G}_p is connected.

The first few primes for which this theorem guarantees connectivity of \mathcal{G}_p are p = 3, 7, 101 and 1, 327, 363 (a gap on the order of 10^6)

Litman - UC Davis

A Bound on Maximal Divisors

Theorem (Eddy–Fuchs–L.–Martin–Tripeny ('23))

For any $\varepsilon > 0$, if $\alpha \in [\varepsilon, 1 - \varepsilon]$ then

$$\log |\mathcal{M}_{n^{\alpha}}(n)| = \log \left(\frac{1}{\alpha^{\alpha}(1-\alpha)^{1-\alpha}}\right) \frac{\log n}{\log \log n} + O\left(\frac{\log n}{(\log \log n)^2}\right).$$

The implied constant depends only on ε .

Litman - UC Davis

A Bound on Maximal Divisors

Theorem (Eddy–Fuchs–L.–Martin–Tripeny ('23))

For any $\varepsilon > 0$, if $\alpha \in [\varepsilon, 1 - \varepsilon]$ then

$$\log |\mathcal{M}_{n^{\alpha}}(n)| = \log \left(\frac{1}{\alpha^{\alpha}(1-\alpha)^{1-\alpha}}\right) \frac{\log n}{\log \log n} + O\left(\frac{\log n}{(\log \log n)^2}\right).$$

The implied constant depends only on ε .

We can now apply this to our connectivity criterion to deduce the following...

A Stronger Bound on p_0 from Maximal Divisors

Theorem

 \mathcal{G}_p is connected for all primes

$$p > 863 \# 53 \# 13 \# 7 \# 5 \# 3^3 2^5 \approx 3.448 \cdot 10^{392}$$

where n# denotes the product of primes less than or equal to n.

Litman - UC Davis

A Stronger Bound on p_0 from Maximal Divisors

Theorem

 \mathcal{G}_p is connected for all primes

$$p > 863 \# 53 \# 13 \# 7 \# 5 \# 3^3 2^5 \approx 3.448 \cdot 10^{392}$$

where n# denotes the product of primes less than or equal to n.

 $p = 863\#53\#13\#7\#5\#3^32^5 - 1471$ is the largest prime for which we do not know if \mathcal{G}_p is connected.

Litman - UC Davis

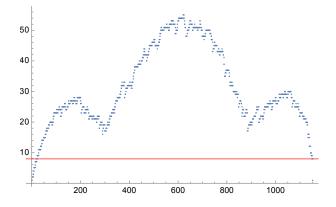
Testing for Smaller Values of 10^n

n	$q_{10000}(10^n)$	$r_{10000}(10^n)$	n	$q_{10000}(10^n)$	$r_{10000}(10^n)$
8	20.22%	38.12%	22	100%	100%
9	49.04%	67.46%	23	100%	100%
10	76.41%	87.05%	24	100%	100%
11	90.78%	95.33%	25	100%	100%
12	97.10%	98.29%	26	100%	100%
13	98.65%	99.11%	27	100%	100%
14	99.44%	99.52%	28	100%	100%
15	99.74%	99.83%	29	100%	100%
16	99.88%	99.88%	30	100%	100%
17	99.93%	99.95%	31	100%	100%
18	99.97%	100%	32	100%	100%
19	99.97%	99.97%	33	100%	100%
20	99.97%	100%	34	100%	100%
21	99.99%	99.99%	35	100%	100%

 $q_m(10^n) =$ the percentage of the first *m* primes after 10^n for which the Connectivity Criterion guarantees connectivity of \mathcal{G}_p $r_m(10^n) =$ the percentage of *m* random primes between 10^n and 10^{n+1} for which the Connectivity Criterion guarantees connectivity of \mathcal{G}_p .

Litman – UC Davis

Thank You!



Litman - UC Davis