Introduc	ction and Inspiration	Background and Methods	Results 0000000 00	Further Interests
	On Conse	ecutive Primitive <i>n</i> th	Roots of U	nity

On Consecutive Primitive *n*th Roots of Unity Modulo *q or* Finding Adjacent Elements of the Same Order in a Finite Field

Matthew Litman* (Thomas Brazelton, Joshua Harrington, Siddarth Kannan) Penn State University

MASON I October 29th, 2016

Matthew Litman

Introduction and Inspiration	Background and Methods		
		0000000 00	

Outline

1 Introduction and Inspiration

2 Background and Methods

3 Results

- Prime Divisors of the Resultant
- Analytic Bounds on Relevant Prime Divisors

4 Further Interests

Results 0000000 00

Introduction and Inspiration

For q prime, the field \mathbb{Z}_q has a cyclic group of units \mathbb{Z}_q^{\times} .

Matthew Litman

Introduction and Inspiration

- For q prime, the field \mathbb{Z}_q has a cyclic group of units \mathbb{Z}_q^{\times} .
- The subgroup structure of \mathbb{Z}_a^{\times} has been well-studied.

Introduction and Inspiration

- For q prime, the field \mathbb{Z}_q has a cyclic group of units \mathbb{Z}_q^{\times} .
- The subgroup structure of \mathbb{Z}_q^{\times} has been well-studied.
- Little is known about the additive gaps between elements of the same multiplicative order.

Introduction and Inspiration

- For q prime, the field \mathbb{Z}_q has a cyclic group of units \mathbb{Z}_q^{\times} .
- The subgroup structure of \mathbb{Z}_q^{\times} has been well-studied.
- Little is known about the additive gaps between elements of the same multiplicative order.
- Here we aim to classify the positive integers n for which there exists a prime q so that Z_q contains adjacent elements of multiplicative order n.

Introduction and Inspiration	Background and Methods		
		0000000 00	

Example: \mathbb{Z}_{11}

x 1 2 3 4 5 6 7 8 9 10 ord(x) 1 10 5 5 5 10 10 10 5 2

where the ord(x) is the multiplicative order of x

Introduction and Inspiration	Background and Methods		
		0000000 00	

Example: \mathbb{Z}_{11}

where the ord(x) is the multiplicative order of x

Remark

Given n, we want to guarantee that modulo some prime q, we can find adjacent elements of order n.

Matthew Litman

Lucas Numbers and Mersenne Numbers

Definition

The nth Lucas number L_n is given by the linear recurrence

$$L_n = L_{n-1} + L_{n-2}$$

with the initial conditions $L_0 = 2$ and $L_1 = 1$.

Matthew Litman

Lucas Numbers and Mersenne Numbers

Definition

The nth Lucas number L_n is given by the linear recurrence

$$L_n = L_{n-1} + L_{n-2}$$

with the initial conditions $L_0 = 2$ and $L_1 = 1$.

Definition

The nth Mersenne number is of the form $M_n = 2^n - 1$.

Matthew Litman

Background and Methods		
	0000000 00	

Outline

1 Introduction and Inspiration

2 Background and Methods

3 Results

Prime Divisors of the Resultant

Analytic Bounds on Relevant Prime Divisors

4 Further Interests

Matthew Litman

Background and Methods		
	0000000 00	

Cyclotomic Polynomials

Definition

The nth cyclotomic polynomial, denoted $\Phi_n(x)$ is a monic, irreducible polynomial in $\mathbb{Z}[x]$ having the primitive nth roots of unity in the complex plane as its roots.

Matthew Litman

Background and Methods		
	0000000 00	

Cyclotomic Polynomials

Definition

The nth cyclotomic polynomial, denoted $\Phi_n(x)$ is a monic, irreducible polynomial in $\mathbb{Z}[x]$ having the primitive nth roots of unity in the complex plane as its roots.

We may express this as

$$\Phi_n(x) = \prod_{(i,n)=1} (x - \zeta_n^i)$$

Matthew Litman

Background and Methods	Results 0000000	

The Resultant

Definition

The resultant of two polynomials over a field K is defined as the product of the differences of their roots in the algebraic closure of K:

$$\operatorname{Res}(f,g) = \prod_{x,y\in\overline{K}: f(x)=g(y)=0} (x-y).$$

Matthew Litman

On Consecutive Primitive nth Roots of Unity Modulo q

Background and Methods	Results 0000000	

The Resultant

Definition

The resultant of two polynomials over a field K is defined as the product of the differences of their roots in the algebraic closure of K:

$$\operatorname{Res}(f,g) = \prod_{x,y\in\overline{K}:f(x)=g(y)=0} (x-y).$$

Remark

 $\operatorname{Res}(f,g) \equiv 0 \pmod{q}$ if and only if f and g share a root in $\overline{\mathbb{Z}}_q$

Matthew Litman

Background and Methods	Results 0000000 00	

 An algebraic integer is a complex number that is the root of a polynomial with integer coefficients.

Background and Methods	Results 0000000 00	

- An algebraic integer is a complex number that is the root of a polynomial with integer coefficients.
- The field norm is a map that arises from certain types of field extensions.

- An algebraic integer is a complex number that is the root of a polynomial with integer coefficients.
- The field norm is a map that arises from certain types of field extensions.
- The field norm of an algebraic integer is a rational integer.

- An algebraic integer is a complex number that is the root of a polynomial with integer coefficients.
- The field norm is a map that arises from certain types of field extensions.
- The field norm of an algebraic integer is a rational integer.

Remark

We are concerned with the specific norm

$$egin{aligned} &\mathcal{N}_{\mathbb{Q}(\zeta_n)/\mathbb{Q}}(\zeta_n-\zeta_n^j+1):=\prod_{\sigma\in \mathit{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})} &\sigma(\zeta_n-\zeta_n^j+1)\ &=\prod_{(i,n)=1}\zeta_n^i-\zeta_n^{ij}+1 \end{aligned}$$

Matthew Litman

Background and Methods	Results 0000000 00	

For prime q > n, an element $\alpha \in \mathbb{Z}_q$ has order n if and only if α is a root of $\Phi_n(x)$ in \mathbb{Z}_q .

Background and Methods	Results 0000000 00	

- For prime q > n, an element $\alpha \in \mathbb{Z}_q$ has order n if and only if α is a root of $\Phi_n(x)$ in \mathbb{Z}_q .
- So, α and $\alpha + 1$ are both of order *n* if and only if α is simultaneously a root of $\Phi_n(x)$ and $\Phi_n(x+1)$.

- For prime q > n, an element $\alpha \in \mathbb{Z}_q$ has order n if and only if α is a root of $\Phi_n(x)$ in \mathbb{Z}_q .
- So, α and $\alpha + 1$ are both of order *n* if and only if α is simultaneously a root of $\Phi_n(x)$ and $\Phi_n(x+1)$.
- Φ_n(x) and Φ_n(x + 1) will share some irreducible factor modulo q whenever Res(Φ_n(x), Φ_n(x + 1)) ≡ 0 (mod q).

- For prime q > n, an element $\alpha \in \mathbb{Z}_q$ has order n if and only if α is a root of $\Phi_n(x)$ in \mathbb{Z}_q .
- So, α and α + 1 are both of order n if and only if α is simultaneously a root of Φ_n(x) and Φ_n(x + 1).
- Φ_n(x) and Φ_n(x + 1) will share some irreducible factor modulo q whenever Res(Φ_n(x), Φ_n(x + 1)) ≡ 0 (mod q).
- It is also known that $\Phi_n(x)$ will split into linear factors mod q whenever $q \equiv 1 \pmod{n}$.

- For prime q > n, an element $\alpha \in \mathbb{Z}_q$ has order n if and only if α is a root of $\Phi_n(x)$ in \mathbb{Z}_q .
- So, α and $\alpha + 1$ are both of order *n* if and only if α is simultaneously a root of $\Phi_n(x)$ and $\Phi_n(x+1)$.
- Φ_n(x) and Φ_n(x + 1) will share some irreducible factor modulo q whenever Res(Φ_n(x), Φ_n(x + 1)) ≡ 0 (mod q).
- It is also known that $\Phi_n(x)$ will split into linear factors mod q whenever $q \equiv 1 \pmod{n}$.
- We conclude that if we find a prime $q \equiv 1 \pmod{n}$ that divides $\operatorname{Res}(\Phi_n(x), \Phi_n(x+1))$, there are consecutive elements of order *n* modulo *q*.

Matthew Litman

Boiling Down The Problem, cont.	Introduction and Inspiration	Background and Methods	Results 0000000 00	Further Interests
	Boiling Down Th	ne Problem, cont.		

• For the remainder of this talk, we will refer to $\operatorname{Res}(\Phi_n(x), \Phi_n(x+1))$ as Γ_n .

Boiling Down The Problem, cont.

For the remainder of this talk, we will refer to $\operatorname{Res}(\Phi_n(x), \Phi_n(x+1))$ as Γ_n .

We have

$$\begin{split} \Gamma_n &= \operatorname{Res}(\Phi_n(x), \Phi_n(x+1)) = \prod_{(i,n)=1} \prod_{(j,n)=1} (\zeta_n^i - \zeta_n^j + 1) \\ &= \prod_{(i,n)=1} N(\zeta_n - \zeta_n^i + 1). \end{split}$$

Matthew Litman

Boiling Down The Problem, cont.

For the remainder of this talk, we will refer to $\operatorname{Res}(\Phi_n(x), \Phi_n(x+1))$ as Γ_n .

We have

$$\begin{split} \Gamma_n &= \operatorname{Res}(\Phi_n(x), \Phi_n(x+1)) = \prod_{(i,n)=1} \prod_{(j,n)=1} (\zeta_n^i - \zeta_n^j + 1) \\ &= \prod_{(i,n)=1} N(\zeta_n - \zeta_n^i + 1). \end{split}$$

• We are thus concerned with finding prime divisors of these norms which are 1 modulo *n*.

Matthew Litman

Background and Methods	Results 0000000 00	

Lemmas

Lemma

For each n > 6, L_n has a primitive, odd prime divisor p such that $p \equiv 1 \pmod{2n}$.

Background and Methods	Results 0000000 00	
	00	

Lemmas

Lemma

For each n > 6, L_n has a primitive, odd prime divisor p such that $p \equiv 1 \pmod{2n}$.

Lemma (Konvalina)

For *n* odd, $L_n = \prod_{i=1}^n (\zeta_n^{2i} + \zeta_n^i - 1) = \prod_{d|n} N(\zeta_d - \zeta_d^{d-1} + 1).$

Matthew Litman

On Consecutive Primitive nth Roots of Unity Modulo q

Background and Methods	Results 0000000 00	

Lemmas

Lemma

For each n > 6, L_n has a primitive, odd prime divisor p such that $p \equiv 1 \pmod{2n}$.

Lemma (Konvalina)

For *n* odd,
$$L_n = \prod_{i=1}^n (\zeta_n^{2i} + \zeta_n^i - 1) = \prod_{d|n} N(\zeta_d - \zeta_d^{d-1} + 1).$$

Lemma

For any n > 6, every primitive prime divisor p of M_n satisfies $p \equiv 1 \pmod{n}$

Matthew Litman

Background and Methods	Results 0000000 00	

Lemma

For any n > 6, every primitive prime divisor p of M_n satisfies $p \equiv 1 \pmod{n}$

Matthew Litman

Background and Methods	Results 0000000 00	

Lemma

For any n > 6, every primitive prime divisor p of M_n satisfies $p \equiv 1 \pmod{n}$

• Suppose p is a primitive prime divisor of $M_n = 2^n - 1$.

Matthew Litman

On Consecutive Primitive nth Roots of Unity Modulo q

Background and Methods	Results 0000000 00	

Lemma

For any n > 6, every primitive prime divisor p of M_n satisfies $p \equiv 1 \pmod{n}$

- Suppose p is a primitive prime divisor of $M_n = 2^n 1$.
- We have $2^n \equiv 1 \pmod{p}$, so $\operatorname{ord}_p(2) \mid n$.

Background and Methods	Results 0000000 00	

Lemma

For any n > 6, every primitive prime divisor p of M_n satisfies $p \equiv 1 \pmod{n}$

- Suppose p is a primitive prime divisor of $M_n = 2^n 1$.
- We have $2^n \equiv 1 \pmod{p}$, so $\operatorname{ord}_p(2) \mid n$.
- If $\operatorname{ord}_p(2) = d < n$, then $p \mid 2^d 1$, which is a contradiction.

Background and Methods	Results 0000000 00	

Lemma

For any n > 6, every primitive prime divisor p of M_n satisfies $p \equiv 1 \pmod{n}$

- Suppose p is a primitive prime divisor of $M_n = 2^n 1$.
- We have $2^n \equiv 1 \pmod{p}$, so $\operatorname{ord}_p(2) \mid n$.
- If $\operatorname{ord}_p(2) = d < n$, then $p \mid 2^d 1$, which is a contradiction.
- We conclude that $\operatorname{ord}_p(2) = n$, so $n \mid |\mathbb{Z}_p^{\times}| = p 1$, and $p \equiv 1 \pmod{n}$.

Matthew Litman

Introduction and Inspiration Background and Methods	Results	
	0000000 00	

Outline

2 Background and Methods

3 Results

- Prime Divisors of the Resultant
- Analytic Bounds on Relevant Prime Divisors

4 Further Interests

	Results ●000000 00	
Prime Divisors of the Resultant		

Theorem

There exists a prime q such that \mathbb{Z}_q contains consecutive primitive nth roots of unity if and only if $n \neq 1, 2, 3, 6$.

Note that this statement is equivalent to the following:

We prove this theorem for n > 6 in three cases:

Matthew Litman

	Results ●000000 00	
Prime Divisors of the Resultant		

Theorem

There exists a prime q such that \mathbb{Z}_q contains consecutive primitive nth roots of unity if and only if $n \neq 1, 2, 3, 6$.

Note that this statement is equivalent to the following:

Theorem

There exists a prime $q \equiv 1 \pmod{n}$ dividing Γ_n if and only if $n \neq 1, 2, 3, 6$.

We prove this theorem for n > 6 in three cases:

	Results ●000000 00	
Prime Divisors of the Resultant		

Theorem

There exists a prime q such that \mathbb{Z}_q contains consecutive primitive nth roots of unity if and only if $n \neq 1, 2, 3, 6$.

Note that this statement is equivalent to the following:

Theorem

```
There exists a prime q \equiv 1 \pmod{n} dividing \Gamma_n if and only if n \neq 1, 2, 3, 6.
```

We prove this theorem for n > 6 in three cases: *n* is odd.

Matthew Litman

	Results ●000000 00	
Prime Divisors of the Resultant		

Theorem

There exists a prime q such that \mathbb{Z}_q contains consecutive primitive nth roots of unity if and only if $n \neq 1, 2, 3, 6$.

Note that this statement is equivalent to the following:

Theorem

```
There exists a prime q \equiv 1 \pmod{n} dividing \Gamma_n if and only if n \neq 1, 2, 3, 6.
```

We prove this theorem for n > 6 in three cases:

- n is odd.
- n = 2k where k is odd.

Matthew Litman

	Results ●000000 00	
Prime Divisors of the Resultant		

Theorem

There exists a prime q such that \mathbb{Z}_q contains consecutive primitive nth roots of unity if and only if $n \neq 1, 2, 3, 6$.

Note that this statement is equivalent to the following:

Theorem

```
There exists a prime q \equiv 1 \pmod{n} dividing \Gamma_n if and only if n \neq 1, 2, 3, 6.
```

We prove this theorem for n > 6 in three cases:

n is odd.

•
$$n = 2k$$
 where k is odd.

•
$$n \equiv 0 \pmod{4}$$

Matthew Litman

	Results ○●○○○○○ ○○	
Prime Divisors of the Resultant		

First we suppose n is odd. By a previous lemma, the nth Lucas number has a primitive prime divisor q, where q ≡ 1 (mod 2n).

	Results 0●00000 00	
Prime Divisors of the Resultant		

- First we suppose *n* is odd. By a previous lemma, the *n*th Lucas number has a primitive prime divisor *q*, where $q \equiv 1 \pmod{2n}$.
- Observe that

$$L_n = \prod_{i=1}^n (\zeta_n^{2i} + \zeta_n^i - 1) = \prod_{d|n} N(\zeta_d - \zeta_d^{d-1} + 1), \text{ and } N(\zeta_n - \zeta_n^{n-1} + 1) | \Gamma_n.$$

	Results 0●00000 00	
Prime Divisors of the Resultant		

- First we suppose *n* is odd. By a previous lemma, the *n*th Lucas number has a primitive prime divisor *q*, where $q \equiv 1 \pmod{2n}$.
- Observe that
 - $L_n = \prod_{i=1}^n (\zeta_n^{2i} + \zeta_n^i 1) = \prod_{d|n} N(\zeta_d \zeta_d^{d-1} + 1), \text{ and } N(\zeta_n \zeta_n^{n-1} + 1) | \Gamma_n.$
- If $q \nmid N(\zeta_n \zeta_n^{n-1} + 1)$, then $q \mid N(\zeta_d \zeta_d^{d-1} + 1)$ for some d < n.

	Results ○●○○○○○ ○○	
Prime Divisors of the Resultant		

- First we suppose n is odd. By a previous lemma, the nth Lucas number has a primitive prime divisor q, where $q \equiv 1 \pmod{2n}$.
- Observe that
 - $L_n = \prod_{i=1}^n (\zeta_n^{2i} + \zeta_n^i 1) = \prod_{d|n} N(\zeta_d \zeta_d^{d-1} + 1), \text{ and } N(\zeta_n \zeta_n^{n-1} + 1) | \Gamma_n.$
- If $q \nmid N(\zeta_n \zeta_n^{n-1} + 1)$, then $q \mid N(\zeta_d \zeta_d^{d-1} + 1)$ for some d < n.
- This implies that $q|L_d$, which is a contradiction!

	Results ○●○○○○○ ○○	
Prime Divisors of the Resultant		

- First we suppose n is odd. By a previous lemma, the nth Lucas number has a primitive prime divisor q, where q ≡ 1 (mod 2n).
- Observe that
 - $L_n = \prod_{i=1}^n (\zeta_n^{2i} + \zeta_n^i 1) = \prod_{d|n} N(\zeta_d \zeta_d^{d-1} + 1), \text{ and } N(\zeta_n \zeta_n^{n-1} + 1) | \Gamma_n.$
- If $q \nmid N(\zeta_n \zeta_n^{n-1} + 1)$, then $q \mid N(\zeta_d \zeta_d^{d-1} + 1)$ for some d < n.
- This implies that $q|L_d$, which is a contradiction!
- We may conclude that q | Γ_n, so modulo q there are consecutive primitive *n*th roots of unity.

Matthew Litman

	Results 00●0000 00	
Prime Divisors of the Resultant		

The case where n = 2k, where k is odd, follows easily from the following fact.

Lemma

Whenever k is odd, $\Gamma_{2k} = \Gamma_k$.

Matthew Litman

	Results 00●0000 00	
Prime Divisors of the Resultant		

The case where n = 2k, where k is odd, follows easily from the following fact.

Lemma

Whenever k is odd, $\Gamma_{2k} = \Gamma_k$.

■ We now treat the case where 4 | *n*.

Matthew Litman

On Consecutive Primitive nth Roots of Unity Modulo q

	Results 000●000 00	
Prime Divisors of the Resultant		
The Proof, cont.		

• Suppose 4 | n, and see that $N(\zeta_n - \zeta_n^{(n/2)+1} + 1)|\Gamma_n$.

Matthew Litman

	Results 000●000 00	
Prime Divisors of the Resultant		

- Suppose 4 | n, and see that $N(\zeta_n \zeta_n^{(n/2)+1} + 1)|\Gamma_n$.
- Apply the observation that

$$N(\zeta_n - \zeta_n^{(n/2)+1} + 1) = N(\zeta_n - (-1)\zeta_n + 1) = N(2\zeta_n + 1)$$

= $\prod_{(i,n)=1} (2\zeta_n^i + 1) = \prod_{(i,n)=1} -\zeta_n^i (-2 - \zeta_n^{-i})$
= $\prod_{(i,n)=1} (-2 - \zeta_n^{-i}) = \Phi_n(-2).$

Matthew Litman

	Results 000●000 00	
Prime Divisors of the Resultant		

- Suppose 4 | n, and see that $N(\zeta_n \zeta_n^{(n/2)+1} + 1)|\Gamma_n$.
- Apply the observation that

$$N(\zeta_n - \zeta_n^{(n/2)+1} + 1) = N(\zeta_n - (-1)\zeta_n + 1) = N(2\zeta_n + 1)$$

= $\prod_{(i,n)=1} (2\zeta_n^i + 1) = \prod_{(i,n)=1} -\zeta_n^i (-2 - \zeta_n^{-i})$
= $\prod_{(i,n)=1} (-2 - \zeta_n^{-i}) = \Phi_n(-2).$

• As $4 \mid n$, it can be shown that $\Phi_n(-2) = \Phi_n(2)$, which is the primitive part of the *n*th Mersenne number.

Matthew Litman

	Results 000●000 00	
Prime Divisors of the Resultant		

- Suppose 4 | n, and see that $N(\zeta_n \zeta_n^{(n/2)+1} + 1)|\Gamma_n$.
- Apply the observation that

$$N(\zeta_n - \zeta_n^{(n/2)+1} + 1) = N(\zeta_n - (-1)\zeta_n + 1) = N(2\zeta_n + 1)$$

= $\prod_{(i,n)=1} (2\zeta_n^i + 1) = \prod_{(i,n)=1} -\zeta_n^i (-2 - \zeta_n^{-i})$
= $\prod_{(i,n)=1} (-2 - \zeta_n^{-i}) = \Phi_n(-2).$

- As $4 \mid n$, it can be shown that $\Phi_n(-2) = \Phi_n(2)$, which is the primitive part of the *n*th Mersenne number.
- All primitive prime divisors q of the *n*th Mersenne number satisfy $q \equiv 1 \pmod{n}$, and the proof is complete.

Matthew Litman

	Results 0000●00 00	
Prime Divisors of the Resultant		

The Exceptional Cases

The results on existence of primitive prime divisors for Lucas and Mersenne numbers holds for n > 6. We can easily calculate Γ_n for $n \le 5$

$$\Gamma_1 = \Gamma_2 = 1$$

$$\Gamma_3 = \Gamma_6 = 4$$

$$\Gamma_4 = 5$$

$$\Gamma_5 = 121 = 11^2$$

Matthew Litman

	Results 00000●0 00	
Prime Divisors of the Resultant		

When *n* is prime

For the case when n = p is a prime number, we have an even easier time finding such a finite field.

Lemma

For a prime p, all primitive prime divisors of L_p are congruent to 1 modulo p.

Prime Divisors of the Resultant

Main Theorem and Some Interesting Corollaries

Theorem

There exists a prime q such that \mathbb{Z}_q contains consecutive primitive nth roots of unity if and only if $n \neq 1, 2, 3, 6$.

Prime Divisors of the Resultant

Main Theorem and Some Interesting Corollaries

Theorem

There exists a prime q such that \mathbb{Z}_q contains consecutive primitive nth roots of unity if and only if $n \neq 1, 2, 3, 6$.

Corollary

There does not exist a finite field \mathbb{Z}_q with two adjacent primitive 6th roots of unity.

Prime Divisors of the Resultant

Main Theorem and Some Interesting Corollaries

Theorem

There exists a prime q such that \mathbb{Z}_q contains consecutive primitive nth roots of unity if and only if $n \neq 1, 2, 3, 6$.

Corollary

There does not exist a finite field \mathbb{Z}_q with two adjacent primitive 6th roots of unity.

Corollary

For q prime, \mathbb{Z}_q has adjacent elements of odd order n if and only if \mathbb{Z}_q contains adjacent elements of order 2n.

Matthew Litman

Bounding the Relevant Prime Divisors

Definition

Let \mathfrak{d}_n be the number of prime divisors $q \equiv 1 \pmod{n}$ of Γ_n , counted with multiplicity.

Matthew Litman

Bounding the Relevant Prime Divisors

Definition

Let \mathfrak{d}_n be the number of prime divisors $q \equiv 1 \pmod{n}$ of Γ_n , counted with multiplicity.

Lemma

The resultant Γ_n satisfies $|\Gamma_n| \leq 3^{\varphi(n)^2}$.

Matthew Litman

Bounding the Relevant Prime Divisors

Definition

Let \mathfrak{d}_n be the number of prime divisors $q \equiv 1 \pmod{n}$ of Γ_n , counted with multiplicity.

Lemma

The resultant Γ_n satisfies $|\Gamma_n| \leq 3^{\varphi(n)^2}$.

Corollary

If $q|\Gamma_n$, then $q \leq 3^{\varphi(n)^2}$.

Matthew Litman

Bounds on the Number of Relevant Prime Divisors

Proposition

The following bound holds for \mathfrak{d}_n :

$$\mathfrak{d}_n \leq \varphi(n)^2 \frac{\ln(3)}{\ln(n+1)}.$$

If n = p is prime, we have the refined bound

$$\mathfrak{d}_p \leq (p-1)^2 rac{\ln(3)}{\ln(2p+1)}.$$

Matthew Litman

Introduction and Inspiration Background and Methods		Further Interests
	0000000 00	

Outline

1 Introduction and Inspiration

2 Background and Methods

3 Results

Prime Divisors of the Resultant

Analytic Bounds on Relevant Prime Divisors

4 Further Interests

Matthew Litman

Introduction and Inspiration Background and Methods		Further Interests
	0000000 00	

Conjecture

For p a prime greater than or equal to 5, all primes q > p dividing Γ_p satisfy $q \equiv 1 \pmod{p}$.

Background and Methods		Further Interests
	0000000 00	

Conjecture

For p a prime greater than or equal to 5, all primes q > p dividing Γ_p satisfy $q \equiv 1 \pmod{p}$.

Conjecture

Let $p \ge 5$ be a prime, and let q be a prime. Whenever α and $\alpha + 1$ are primitive pth roots of unity in a finite field \mathbb{F}_{q^r} where q > p, we have $\alpha \in \mathbb{F}_q$.

Matthew Litman

Background and Methods		Further Interests
	0000000 00	
	00	

The following proposition is the beginning of an argument towards proving our first conjecture:

Proposition

When p is prime,
$$N(\zeta_p - \zeta_p^j + 1) \equiv 1 \pmod{p}$$
 for each $1 \leq j \leq p - 1$.

It is much harder to reach the same conclusion for the individual prime divisors of these norms.

	Results 0000000 00	Further Interests

There seems to be a nice relationship between the multiplicity of a prime divisor q of the resultant and the behavior of $\Phi_n(x)$ when considered modulo q:

	Results 0000000 00	Further Interests

There seems to be a nice relationship between the multiplicity of a prime divisor q of the resultant and the behavior of $\Phi_n(x)$ when considered modulo q:

Conjecture

For p prime, let k be the largest integer such that $q^k | \Gamma_p$ for some prime $q \equiv 1 \pmod{p}$. If $k < \frac{p-1}{2}$, then there exist exactly k distinct elements $\alpha_1, \ldots, \alpha_k \in \mathbb{Z}_q$ such that the order of α_i and $\alpha_i + 1$ is p for each $1 \leq i \leq k$. If $k \geq \frac{p-1}{2}$, there are exactly $\frac{p-1}{2}$ distinct elements $\alpha_1, \ldots, \alpha_{\frac{p-1}{2}} \in \mathbb{Z}_q$ such that the order of α_i and $\alpha_i + 1$ is p for each $1 \leq i \leq \frac{p-1}{2}$.

Matthew Litman

0000000 00	

Thank You

National Science Foundation (grant DMS-1560019)

Matthew Litman

Introduction and Inspiration	Background and Methods		Further Interests
		0000000 00	

Thank You

- National Science Foundation (grant DMS-1560019)
- Muhlenberg College for supporting the REU on which this work is based

Background and Methods		Further Interests
	0000000	

Thank You

- National Science Foundation (grant DMS-1560019)
- Muhlenberg College for supporting the REU on which this work is based
- Organizers of MASON I

Matthew Litman