Error Approximation for Backwards and Simple Continued Fractions

Matthew Litman
Joint work with Cameron Bjorklund

Number Theory Series in LA II
February $8^{\text {th }}-9^{\text {th }}, 2020$

Outline of the Talk

1 Introduce continued fractions and their properties

Outline of the Talk

1 Introduce continued fractions and their properties
2 Introduce backwards continued fractions and their properties

Outline of the Talk

1 Introduce continued fractions and their properties
2 Introduce backwards continued fractions and their properties
3 Introduce the BCF and CF errors $\varepsilon_{m}(x)$ and $E_{n}(x)$

Outline of the Talk

1 Introduce continued fractions and their properties
2 Introduce backwards continued fractions and their properties
3 Introduce the BCF and CF errors $\varepsilon_{m}(x)$ and $E_{n}(x)$
4 Construct bounds for $\varepsilon_{m}(x)$ and $E_{n}(x)$ on cylinder sets

What are Continued Fractions?

The continued fraction (CF) expansion for $x \in \mathbb{R}$ is the expression

$$
x=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots}}}=:\left[a_{0}, a_{1}, \ldots\right]
$$

where $x_{0}=x, a_{0}=\lfloor x\rfloor, x_{i+1}=\frac{1}{x_{i}-a_{i}}$, and $a_{i}=\left\lfloor x_{i}\right\rfloor$. By this construction, we get that $a_{0} \in \mathbb{Z}$ and $a_{i} \geq 1$ for each $i \geq 1$.

What are Continued Fractions?

The continued fraction (CF) expansion for $x \in \mathbb{R}$ is the expression

$$
x=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots}}}=:\left[a_{0}, a_{1}, \ldots\right]
$$

where $x_{0}=x, a_{0}=\lfloor x\rfloor, x_{i+1}=\frac{1}{x_{i}-a_{i}}$, and $a_{i}=\left\lfloor x_{i}\right\rfloor$. By this construction, we get that $a_{0} \in \mathbb{Z}$ and $a_{i} \geq 1$ for each $i \geq 1$.

The $n^{\text {th }}$ CF convergent $\frac{P_{n}}{Q_{n}}$ of x is

$$
\frac{P_{n}}{Q_{n}}=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots}}}=\left[a_{0}, \ldots, a_{n}\right] .
$$

Backwards Continued Fractions

The backwards continued fraction (BCF) expansion of $x \in \mathbb{R}$ is the expression

$$
x=b_{0}-\frac{1}{b_{1}-\frac{1}{b_{2}-\frac{1}{\ddots}}}=:\left[\left[b_{0}, b_{1}, \ldots\right]\right]
$$

where $x_{0}=x, b_{0}=\lfloor x\rfloor+1, x_{i+1}=\frac{1}{b_{i}-x_{i}}$, and $b_{i}=\left\lfloor x_{i}\right\rfloor+1$. By these calculations, we see that $b_{0} \in \mathbb{Z}$ and $b_{i} \geq 2$ for each $i \geq 1$.

Backwards Continued Fractions

The backwards continued fraction (BCF) expansion of $x \in \mathbb{R}$ is the expression

$$
x=b_{0}-\frac{1}{b_{1}-\frac{1}{b_{2}-\frac{1}{\ddots}}}=:\left[\left[b_{0}, b_{1}, \ldots\right]\right]
$$

where $x_{0}=x, b_{0}=\lfloor x\rfloor+1, x_{i+1}=\frac{1}{b_{i}-x_{i}}$, and $b_{i}=\left\lfloor x_{i}\right\rfloor+1$. By these calculations, we see that $b_{0} \in \mathbb{Z}$ and $b_{i} \geq 2$ for each $i \geq 1$.

The $n^{\text {th }}$ BCF convergent $\frac{p_{n}}{q_{n}}$ of x is

$$
\frac{p_{n}}{q_{n}}=b_{0}-\frac{1}{b_{1}-\frac{1}{b_{2}-\frac{1}{\ddots--\frac{1}{b_{n}}}}}=\left[\left[b_{0}, \ldots, b_{n}\right]\right] .
$$

Example: CF and BCF Expansion of $\frac{\pi}{4}$

Example: CF and BCF Expansion of $\frac{\pi}{4}$

$\frac{\pi}{4}=[0,1,3,1,1,1,15,2,72, \ldots]$.
Let's look at some convergents.

$$
\begin{aligned}
& \frac{P_{0}}{Q_{0}}=[0]=0 \Rightarrow \\
& \frac{P_{1}}{Q_{1}}=[0,1]=1 \Rightarrow \\
& \frac{P_{2}}{Q_{2}}=[0,1,3]=\frac{3}{4} \Rightarrow
\end{aligned} \begin{aligned}
& \frac{P_{0}}{Q_{0}}<\frac{\pi}{4} \\
& \frac{P_{1}}{Q_{1}}>\frac{\pi}{4}
\end{aligned}
$$

CF convergents alternate between under- and over-estimates.

Example: CF and BCF Expansion of $\frac{\pi}{4}$

$\frac{\pi}{4}=[0,1,3,1,1,1,15,2,72, \ldots]$.
Let's look at some convergents.

$$
\begin{array}{ll}
\frac{P_{0}}{Q_{0}}=[0]=0 \Rightarrow & \frac{P_{0}}{Q_{0}}<\frac{\pi}{4} \\
\frac{P_{1}}{Q_{1}}=[0,1]=1 \Rightarrow & \frac{P_{1}}{Q_{1}}>\frac{\pi}{4} \\
\frac{P_{2}}{Q_{2}}=[0,1,3]=\frac{3}{4} \Rightarrow & \frac{P_{2}}{Q_{2}}<\frac{\pi}{4}
\end{array}
$$

CF convergents alternate between under- and over-estimates.
$\frac{\pi}{4}=[[1,5,3,17,2,74,11, \ldots]]$.
Let's look at some convergents.

$$
\begin{array}{ll}
\frac{p_{0}}{q_{0}}=[[1]]=1 \Rightarrow & \frac{p_{0}}{q_{0}}>\frac{\pi}{4} \\
\frac{p_{1}}{q_{1}}=[[1,5]]=\frac{4}{5} \Rightarrow & \frac{p_{1}}{q_{1}}>\frac{\pi}{4} \\
\frac{p_{2}}{q_{2}}=[[1,5,3]]=\frac{11}{14} \Rightarrow & \frac{p_{2}}{q_{2}}>\frac{\pi}{4}
\end{array}
$$

BCF convergents converge monotonically from above to the value they are estimating.

Why do we care about continued fractions?

■ The denominators Q_{m} grow exponentially and

$$
\frac{1}{Q_{m} Q_{m+2}} \leq\left|x-\frac{P_{m}}{Q_{m}}\right| \leq \frac{1}{Q_{m} Q_{m+1}} .
$$

Why do we care about continued fractions?

■ The denominators Q_{m} grow exponentially and

$$
\frac{1}{Q_{m} Q_{m+2}} \leq\left|x-\frac{P_{m}}{Q_{m}}\right| \leq \frac{1}{Q_{m} Q_{m+1}} .
$$

■ Continued fractions give the "best" rational approximations.

Why do we care about continued fractions?

■ The denominators Q_{m} grow exponentially and

$$
\frac{1}{Q_{m} Q_{m+2}} \leq\left|x-\frac{P_{m}}{Q_{m}}\right| \leq \frac{1}{Q_{m} Q_{m+1}} .
$$

■ Continued fractions give the "best" rational approximations.

Why do we care about continued fractions?

■ The denominators Q_{m} grow exponentially and

$$
\frac{1}{Q_{m} Q_{m+2}} \leq\left|x-\frac{P_{m}}{Q_{m}}\right| \leq \frac{1}{Q_{m} Q_{m+1}} .
$$

■ Continued fractions give the "best" rational approximations.

However, their oscillatory nature makes them hard to work with.

Why do we care about backwards continued fractions?

■ The denominators q_{m} grow exponentially and

$$
\left|x-\frac{p_{m}}{q_{m}}\right| \leq \frac{1}{q_{m}}
$$

Why do we care about backwards continued fractions?

■ The denominators q_{m} grow exponentially and

$$
\left|x-\frac{p_{m}}{q_{m}}\right| \leq \frac{1}{q_{m}} .
$$

- BCFs are easier to work with than CFs.

Why do we care about backwards continued fractions?

■ The denominators q_{m} grow exponentially and

$$
\left|x-\frac{p_{m}}{q_{m}}\right| \leq \frac{1}{q_{m}}
$$

- BCFs are easier to work with than CFs.

Theorem (L-Bjorklund)

The set of BCF expansions satisfy the following well-ordering properties:

Why do we care about backwards continued fractions?

■ The denominators q_{m} grow exponentially and

$$
\left|x-\frac{p_{m}}{q_{m}}\right| \leq \frac{1}{q_{m}}
$$

- BCFs are easier to work with than CFs.

Theorem (L-Bjorklund)

The set of BCF expansions satisfy the following well-ordering properties:
$1\left[\left[b_{0}, \ldots, b_{n}\right]\right]<\left[\left[b_{0}, \ldots, b_{n}+1\right]\right] ;$

Why do we care about backwards continued fractions?

- The denominators q_{m} grow exponentially and

$$
\left|x-\frac{p_{m}}{q_{m}}\right| \leq \frac{1}{q_{m}}
$$

- BCFs are easier to work with than CFs.

Theorem (L-Bjorklund)

The set of BCF expansions satisfy the following well-ordering properties:
$1\left[\left[b_{0}, \ldots, b_{n}\right]\right]<\left[\left[b_{0}, \ldots, b_{n}+1\right]\right]$;
$2\left[\left[b_{0}, \ldots, b_{n-1}, b_{n}\right]\right]<\left[\left[b_{0}, \ldots, b_{n-1}, b_{n}^{\prime}, \ldots, b_{s}^{\prime}\right]\right]$ where $b_{n}<$ b_{n}^{\prime} and $s \geq n$, for any $b_{i}^{\prime} \geq 2$.

Our Setting for Error Estimation

Our Setting for Error Estimation

Continued Fractions

$$
x=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\ldots}}
$$

$x \in \mathbb{R}, a_{0} \in \mathbb{Z}$ and $a_{i} \geq 1$.
The nth CF convergent of x is

$$
\frac{P_{n}}{Q_{n}}=\left[a_{0}, a_{1}, a_{2}, \ldots, a_{n}\right]
$$

The nth term CF error is

$$
E_{n}(x)=\left|x-\frac{P_{n}}{Q_{n}}\right|
$$

Our Setting for Error Estimation

Continued Fractions

$$
x=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\ldots}}
$$

$x \in \mathbb{R}, a_{0} \in \mathbb{Z}$ and $a_{i} \geq 1$.
The nth CF convergent of x is

$$
\frac{P_{n}}{Q_{n}}=\left[a_{0}, a_{1}, a_{2}, \ldots, a_{n}\right]
$$

The nth term CF error is

$$
E_{n}(x)=\left|x-\frac{P_{n}}{Q_{n}}\right|
$$

Backwards Continued
Fractions

$$
y=b_{0}-\frac{1}{b_{1}-\frac{1}{b_{2}-\ldots}}
$$

$y \in \mathbb{R}, b_{0} \in \mathbb{Z}$ and $b_{i} \geq 2$.
The nth BCF convergent of y is

$$
\frac{p_{n}}{q_{n}}=\left[\left[b_{0}, b_{1}, b_{2}, \ldots, b_{n}\right]\right]
$$

The nth term BCF error is

$$
\varepsilon_{n}(x)=\left|x-\frac{p_{n}}{q_{n}}\right|
$$

The BCF Error $\varepsilon_{2}(x)$

The BCF Error $\varepsilon_{m}(x)$

The CF Error $E_{2}(x)$

The CF Error $E_{m}(x)$

BCF Cylinder Sets and BCF Error Bounds $f_{m}^{\left[\left[1, b_{2}, \ldots, b_{r}\right]\right]}(x)$

The r th-level BCF cylinder set is

$$
C_{\left[\left[b_{1}, \ldots, b_{r}\right]\right]}=\left\{x \in \mathbb{R}: r \text { th BCF convergent of } x=\left[\left[b_{1}, \ldots, b_{r}\right]\right]\right\}
$$

A bounding curve of level r is
$f_{m}^{\left[\left[1, b_{2}, \ldots, b_{r}\right]\right]}(x)=$ limiting function for the BCF error of x given we are using a m-term BCF approximation and the r-term BCF expansion of x is $\left[\left[1, b_{2} \ldots, b_{r}\right]\right]$.

Overall Bound for the BCF Error, $f_{m}(x)$

Theorem (L-Bjorklund)

For any $x \in[0,1]$, we have $\varepsilon_{m}(x) \leq f_{m}(x)$ where

$$
f_{m}(x)=\frac{1}{\left(\frac{1}{1-x}\right)\left((m-1) \frac{1}{1-x}+1\right)}=\frac{(1-x)^{2}}{m-x} .
$$

Key Idea for Bounding the Error

To obtain a bound for the error on $C_{\left[\left[1, b_{2}, \ldots, b_{r}\right]\right]}$, we must find the maximum of $\varepsilon_{m}(x)$ on $C_{\left[\left[1, b_{2}, \ldots, b_{r}, n\right]\right]}$ for $n=2,3, \ldots$ and interpolate along these values.

The General Case $f_{m}^{\left.\left[11, b_{2}, \ldots, b_{r}\right]\right]}(x)$

Theorem (L-Bjorklund)

For $x \in C_{\left[\left[1, b_{2}, \ldots, b_{r}\right]\right]}$, i.e. the rth BCF convergent for x is $\left[\left[1, b_{2}, \ldots, b_{r}\right]\right]=\frac{p_{r}}{q_{r}}$, we have the mth BCF error $\varepsilon_{m}(x)$ is bounded by

$$
f_{m}^{\left[\left[1, b_{2}, \ldots, b_{r}\right]\right]}(x)=\frac{\left(p_{r}-q_{r} x\right)^{2}}{(m-r)+q_{r}\left(p_{r}-q_{r} x\right)}=\frac{\varepsilon_{r}(x)^{2}}{\frac{m-r}{q_{r}^{2}}+\varepsilon_{r}(x)}
$$

Some Examples of $f_{m}^{\left.\left[1, b_{2}, \ldots, b_{r}\right]\right]}(x)$

The Maximum of $E_{m}(x)$ on $C_{\left[0, c_{2}, \ldots, c_{r}\right]}$

The General Case for CF Bounds $g_{m}^{\left[0, c_{2}, \ldots, c_{]}\right]}(x)$

Theorem (L-Bjorklund)

We have the following bounding function for the CF error $E_{m}(x)$ on $C_{\left[0, c_{2}, \ldots, c_{r}\right]}$:
$g_{m}^{\left[0, c_{2}, \ldots, c_{r}\right]}(x)= \begin{cases}\frac{\left(P_{r}-Q_{r} x\right)^{2}}{F_{m-r+1} F_{m-r}+Q_{r}\left(P_{r}-Q_{r} x\right)} & \text { if } m-r \text { is even } \\ \frac{\left(P_{r}-Q_{r} x\right)^{2}}{F_{m-r+1} F_{m-r}-Q_{r}\left(P_{r}-Q_{r} x\right)} & \text { if } m-r \text { is odd, }\end{cases}$
where F_{n} is the nth Fibonacci number, and we have $F_{0}=0$, $F_{1}=F_{2}=1$, and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$.

Some Examples of $g_{m}^{\left[0, c_{2}, \ldots, c_{r}\right]}(x)$

Some Examples of $g_{m}^{\left[0, c_{2}, \ldots, c_{r}\right]}(x)$

- $E_{5}(\mathrm{x})$
- $g_{5}{ }^{[0,6,1]}(\mathrm{x})$
- $g_{5}^{[0,6,1,1]}(\mathrm{x})$
$-g_{5}{ }^{[0,6,2]}(\mathrm{x})$
- $g_{5}^{[0,0,6,2,1]}(\mathrm{x})$
- $g_{5}{ }^{[0,6,3]}(\mathrm{x})$
- $g_{5}^{[0,6,3,1]}(\mathrm{x})$

In Conclusion...

- We were able to effectively bound the BCF or CF error on any BCF or CF cylinder set.

In Conclusion...

- We were able to effectively bound the BCF or CF error on any BCF or CF cylinder set.
- We made some aesthetically pleasing pictures.

In Conclusion...

- We were able to effectively bound the BCF or CF error on any BCF or CF cylinder set.
- We made some aesthetically pleasing pictures.

In Conclusion...

- We were able to effectively bound the BCF or CF error on any BCF or CF cylinder set.
■ We made some aesthetically pleasing pictures.
Future Directions...
■ Transfer error estimations between $\varepsilon_{m}(x)$ and $E_{n}(x)$.

In Conclusion...

- We were able to effectively bound the BCF or CF error on any BCF or CF cylinder set.
- We made some aesthetically pleasing pictures.

Future Directions...

- Transfer error estimations between $\varepsilon_{m}(x)$ and $E_{n}(x)$.

■ Reprove old results and prove new results on CFs using bounding curves.

In Conclusion...

- We were able to effectively bound the BCF or CF error on any BCF or CF cylinder set.
- We made some aesthetically pleasing pictures.

Future Directions...

- Transfer error estimations between $\varepsilon_{m}(x)$ and $E_{n}(x)$.

■ Reprove old results and prove new results on CFs using bounding curves.
■ Study expansions of transcendental numbers.

Thank You!

