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Introduction and Inspiration

For q prime, the field Zq has a cyclic group of units Z×q .

The subgroup structure of Z×q has been well-studied.

Little is known about the additive gaps between elements of
the same order.

Here we aim to classify the positive integers n for which there
exists a prime q so that Zq contains adjacent elements of
multiplicative order n.
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Example: Z11

x 1 2 3 4 5 6 7 8 9 10
ord(x) 1 10 5 5 5 10 10 10 5 2

where the order of x is the smallest positive integer k such that

xk ≡ 1 (mod q)

Remark

Given n, we want to guarantee that modulo some prime q, we can
find adjacent elements of order n.
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Lucas Numbers and Mersenne Numbers

Definition

The nth Lucas number Ln is given by the linear recurrence

Ln = Ln−1 + Ln−2

with the initial conditions L0 = 2 and L1 = 1.

Definition

The nth Mersenne number is of the form Mn = 2n − 1.
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Necessary Tools

Definition

The nth cyclotomic polynomial, denoted Φn(x) is a monic,
irreducible polynomial in Z[x ] having the primitive nth roots of
unity in the complex plane as its roots.
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The Resultant

Definition

The resultant of two polynomials over a field K is defined as the
product of the differences of their roots in the algebraic closure of
K :

Res(f , g) =
∏

x ,y∈K :f (x)=g(y)=0

(x − y).

Siddarth Kannan, Matthew Litman

On Consecutive Primitive nth Roots of Unity Modulo q



Introduction and Inspiration Background and Methods Results Further Interests

Algebraic Integers and Norm

An algebraic integer is a complex number that is the root of a
polynomial with integer coefficients.

The field norm is a map that arises from certain types of field
extensions.

The field norm of an algebraic integer is a rational integer.

Remark

We are concerned with the specific norm

N(ζn − ζ jn + 1) =
∏

(i ,n)=1

ζ in − ζ ijn + 1.
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Boiling Down The Problem

For prime q > n, an element α ∈ Zq has order n if and only if
α is a root of Φn(x) in Zq.

So, α and α + 1 are both of order n if and only if α is
simultaneously a root of Φn(x) and Φn(x + 1).

Φn(x) and Φn(x + 1) will share some irreducible factor
modulo q whenever Res(Φn(x),Φn(x + 1)) ≡ 0 (mod q).

It is also known that Φn(x) will split into linear factors mod q
whenver q ≡ 1 (mod n).

We conclude that if we find a prime q ≡ 1 (mod n) that
divides Res(Φn(x),Φn(x + 1)), there are consecutive elements
of order n modulo q.
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Boiling Down The Problem, cont.

For the remainder of this talk, we say Γn for
Res(Φn(x),Φn(x + 1)).

We have

Γn = Res(Φn(x),Φn(x + 1)) =
∏

(i ,n)=1

∏
(j ,n)=1

(ζ in − ζ jn + 1)

=
∏

(i ,n)=1

N(ζn − ζ in + 1).

We are thus concerned with finding prime divisors of these
norms which are 1 modulo n.
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Lemmas

Lemma

For each n > 6, Ln has a primitive, odd prime divisor p such that
p ≡ 1 (mod 2n).

Lemma (Konvolina)

For n odd, Ln =
∏n

i=1(ζ2in + ζ in − 1) =
∏

d |n N(ζd − ζd−1d + 1).

Lemma

For any n > 6, every primitive prime divisor p of Mn satisfies p ≡ 1
(mod n)

Siddarth Kannan, Matthew Litman

On Consecutive Primitive nth Roots of Unity Modulo q



Introduction and Inspiration Background and Methods Results Further Interests

Lemmas

Lemma

For each n > 6, Ln has a primitive, odd prime divisor p such that
p ≡ 1 (mod 2n).

Lemma (Konvolina)

For n odd, Ln =
∏n

i=1(ζ2in + ζ in − 1) =
∏

d |n N(ζd − ζd−1d + 1).

Lemma

For any n > 6, every primitive prime divisor p of Mn satisfies p ≡ 1
(mod n)

Siddarth Kannan, Matthew Litman

On Consecutive Primitive nth Roots of Unity Modulo q



Introduction and Inspiration Background and Methods Results Further Interests

Lemmas

Lemma

For each n > 6, Ln has a primitive, odd prime divisor p such that
p ≡ 1 (mod 2n).

Lemma (Konvolina)

For n odd, Ln =
∏n

i=1(ζ2in + ζ in − 1) =
∏

d |n N(ζd − ζd−1d + 1).

Lemma

For any n > 6, every primitive prime divisor p of Mn satisfies p ≡ 1
(mod n)

Siddarth Kannan, Matthew Litman

On Consecutive Primitive nth Roots of Unity Modulo q



Introduction and Inspiration Background and Methods Results Further Interests

Proof

Suppose p is a primitive prime divisor of Mn = 2n − 1.

We have 2n ≡ 1 (mod p), so ordp(2) | n.

If ordp(2) = d < n, then p | 2d − 1, which is a contradiction.

We conclude that ordp(2) = n, so n | |Z×p | = p − 1, and
p ≡ 1 (mod n).
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Prime Divisors of the Resultant

Results

Theorem

There exists a prime q such that Zq contains consecutive primitive
nth roots of unity if and only if n 6= 1, 2, 3, 6.

Observe, from our slides on boiling down the problem, that this
statement is equivalent to the following:

Theorem

There exists a prime q ≡ 1 (mod n) dividing Γn if and only if
n 6= 1, 2, 3, 6.

We prove this theorem for n > 6 in three cases:

n is odd.
n = 2k where k is odd.
n ≡ 0 (mod 4).
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Prime Divisors of the Resultant

The Proof

First we suppose n is odd. By a previous lemma, the nth
Lucas number has a primitive prime divisor q, where q ≡ 1
(mod 2n).

Observe that
Ln =

∏n
i=1(ζ2in + ζ in − 1) =

∏
d |n N(ζd − ζd−1d + 1), and

N(ζn − ζn−1n + 1) | Γn.

If q - N(ζn − ζn−1n + 1), then q|N(ζd − ζd−1d + 1) for some
d < n.

This implies that q|Ld , which is a contradiction!

We may conclude that q | Γn, so modulo q there are
consecutive primitive nth roots of unity.
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Prime Divisors of the Resultant

The Proof, cont.

The case where n = 2k , where k is odd, follows easily from the
following fact.

Lemma

Whenever k is odd, Γ2k = Γk .

We now treat the case where 4 | n.
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Prime Divisors of the Resultant

The Proof, cont.

Suppose 4 | n, and see that N(ζn − ζ(n/2)+1
n + 1)|Γn.

Apply the observation that

N(ζn − ζ(n/2)+1
n + 1) = N(ζn − (−1)ζn + 1) = N(2ζn + 1)

=
∏

(i ,n)=1

(2ζ in + 1) =
∏

(i ,n)=1

−ζ in(−2− ζ−in )

=
∏

(i ,n)=1

(−2− ζ−in ) = Φn(−2).

As 4 | n, it can be shown that Φn(−2) = Φn(2), which is the
primitive part of the nth Mersenne number.

All primitive prime divisors q of the nth Mersenne number
satisfy q ≡ 1 (mod n), and the proof is complete.
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Prime Divisors of the Resultant

The Proof, cont.

Suppose 4 | n, and see that N(ζn − ζ(n/2)+1
n + 1)|Γn.

Apply the observation that

N(ζn − ζ(n/2)+1
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∏
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∏

(i ,n)=1

−ζ in(−2− ζ−in )
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Analytic Bounds on Relevant Prime Divisors

Bounding the Relevant Prime Divisors

Definition

Let dn be the number of prime divisors q ≡ 1 (mod n) of Γn,
counted with multiplicity.

Lemma

The resultant Γn satisfies |Γn| ≤ 3ϕ(n)
2
.

Corollary

If q|Γn, then q ≤ 3ϕ(n)
2
.
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Analytic Bounds on Relevant Prime Divisors

Proposition

The following bound holds for dn:

dn ≤ ϕ(n)2
ln(3)

ln(n + 1)
.

If n = p is prime, we have the refined bound

dp ≤ (p − 1)2
ln(3)

ln(2p + 1)
.
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Further Interests

Conjecture

For n 6= 1, 2, 3, 6, all primes q > n dividing Γn satisfy q ≡ 1
(mod n).

Conjecture

Let n 6= 1, 2, 3, 6, and let q be a prime. Whenever α and α + 1 are
primitive nth roots of unity in a finite field Fqr where q > n, we
have α ∈ Fq.
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Further Interests

The following proposition is the beginning of an argument towards
proving our first conjecture when n = p is prime:

Proposition

When p is prime, N(ζp − ζ jp + 1) ≡ 1 (mod p) for each
1 ≤ j ≤ p − 1.

It is much harder to reach the same conclusion for the individual
prime divisors of these norms.
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Further Interests

There seems to be a nice relationship between the multiplicity of a
prime divisor q of the resultant and the behavior of Φn(x) when
considered modulo q:

Conjecture

For p prime, let k be the largest integer such that qk |Γp for some
prime q ≡ 1 (mod p). If k < p−1

2 , then there exist exactly k
distinct elements α1, . . . , αk ∈ Zq such that the order of αi and
αi + 1 is p for each 1 ≤ i ≤ k . If k ≥ p−1

2 , there are exactly p−1
2

distinct elements α1, . . . , α p−1
2
∈ Zq such that the order of αi and

αi + 1 is p for each 1 ≤ i ≤ p−1
2 .
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