On Consecutive Primitive nth Roots of Unity Modulo q
 or

Finding Adjacent Elements of the Same Order in a Finite Field

Siddarth Kannan
Matthew Litman
(Thomas Brazelton, Joshua Harrington)*
Muhlenberg College

August 19 ${ }^{\text {th }} 2016$

Outline

1 Introduction and Inspiration

2 Background and Methods

3 Results
■ Prime Divisors of the Resultant

- Analytic Bounds on Relevant Prime Divisors

4 Further Interests

Introduction and Inspiration

■ For q prime, the field \mathbb{Z}_{q} has a cyclic group of units \mathbb{Z}_{q}^{\times}.

Introduction and Inspiration

■ For q prime, the field \mathbb{Z}_{q} has a cyclic group of units \mathbb{Z}_{q}^{\times}.
■ The subgroup structure of \mathbb{Z}_{q}^{\times}has been well-studied.

Introduction and Inspiration

■ For q prime, the field \mathbb{Z}_{q} has a cyclic group of units \mathbb{Z}_{q}^{\times}.
■ The subgroup structure of \mathbb{Z}_{a}^{\times}has been well-studied.

- Little is known about the additive gaps between elements of the same order.

Introduction and Inspiration

■ For q prime, the field \mathbb{Z}_{q} has a cyclic group of units \mathbb{Z}_{q}^{\times}.
■ The subgroup structure of \mathbb{Z}_{q}^{\times}has been well-studied.

- Little is known about the additive gaps between elements of the same order.

■ Here we aim to classify the positive integers n for which there exists a prime q so that \mathbb{Z}_{q} contains adjacent elements of multiplicative order n.

Example: \mathbb{Z}_{11}

$$
\begin{array}{c|cccccccccc}
x & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\operatorname{ord}(x) & 1 & 10 & 5 & 5 & 5 & 10 & 10 & 10 & 5 & 2
\end{array}
$$

where the order of x is the smallest positive integer k such that

$$
x^{k} \equiv 1 \quad(\bmod q)
$$

Example: \mathbb{Z}_{11}

$$
\begin{array}{c|cccccccccc}
x & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\operatorname{ord}(x) & 1 & 10 & 5 & 5 & 5 & 10 & 10 & 10 & 5 & 2
\end{array}
$$

where the order of x is the smallest positive integer k such that

$$
x^{k} \equiv 1 \quad(\bmod q)
$$

Remark

Given n, we want to guarantee that modulo some prime q, we can find adjacent elements of order n.

Lucas Numbers and Mersenne Numbers

Definition

The nth Lucas number L_{n} is given by the linear recurrence

$$
L_{n}=L_{n-1}+L_{n-2}
$$

with the initial conditions $L_{0}=2$ and $L_{1}=1$.

Lucas Numbers and Mersenne Numbers

Definition

The nth Lucas number L_{n} is given by the linear recurrence

$$
L_{n}=L_{n-1}+L_{n-2}
$$

with the initial conditions $L_{0}=2$ and $L_{1}=1$.

Definition

The nth Mersenne number is of the form $M_{n}=2^{n}-1$.

Outline

1 Introduction and Inspiration

2 Background and Methods

3 Results
■ Prime Divisors of the Resultant

- Analytic Bounds on Relevant Prime Divisors

4 Further Interests

Necessary Tools

Definition

The nth cyclotomic polynomial, denoted $\Phi_{n}(x)$ is a monic, irreducible polynomial in $\mathbb{Z}[x]$ having the primitive nth roots of unity in the complex plane as its roots.

The Resultant

Definition

The resultant of two polynomials over a field K is defined as the product of the differences of their roots in the algebraic closure of K:

$$
\operatorname{Res}(f, g)=\prod_{x, y \in \bar{K}: f(x)=g(y)=0}(x-y)
$$

Algebraic Integers and Norm

■ An algebraic integer is a complex number that is the root of a polynomial with integer coefficients.

Algebraic Integers and Norm

- An algebraic integer is a complex number that is the root of a polynomial with integer coefficients.
- The field norm is a map that arises from certain types of field extensions.

Algebraic Integers and Norm

- An algebraic integer is a complex number that is the root of a polynomial with integer coefficients.
- The field norm is a map that arises from certain types of field extensions.
- The field norm of an algebraic integer is a rational integer.

Algebraic Integers and Norm

- An algebraic integer is a complex number that is the root of a polynomial with integer coefficients.
- The field norm is a map that arises from certain types of field extensions.
- The field norm of an algebraic integer is a rational integer.

Remark

We are concerned with the specific norm

$$
N\left(\zeta_{n}-\zeta_{n}^{j}+1\right)=\prod_{(i, n)=1} \zeta_{n}^{i}-\zeta_{n}^{i j}+1
$$

Boiling Down The Problem

■ For prime $q>n$, an element $\alpha \in \mathbb{Z}_{\boldsymbol{q}}$ has order n if and only if α is a root of $\Phi_{n}(x)$ in \mathbb{Z}_{q}.

Boiling Down The Problem

■ For prime $q>n$, an element $\alpha \in \mathbb{Z}_{q}$ has order n if and only if α is a root of $\Phi_{n}(x)$ in \mathbb{Z}_{q}.

- So, α and $\alpha+1$ are both of order n if and only if α is simultaneously a root of $\Phi_{n}(x)$ and $\Phi_{n}(x+1)$.

Boiling Down The Problem

■ For prime $q>n$, an element $\alpha \in \mathbb{Z}_{q}$ has order n if and only if α is a root of $\Phi_{n}(x)$ in \mathbb{Z}_{q}.

- So, α and $\alpha+1$ are both of order n if and only if α is simultaneously a root of $\Phi_{n}(x)$ and $\Phi_{n}(x+1)$.
- $\Phi_{n}(x)$ and $\Phi_{n}(x+1)$ will share some irreducible factor modulo q whenever $\operatorname{Res}\left(\Phi_{n}(x), \Phi_{n}(x+1)\right) \equiv 0(\bmod q)$.

Boiling Down The Problem

■ For prime $q>n$, an element $\alpha \in \mathbb{Z}_{q}$ has order n if and only if α is a root of $\Phi_{n}(x)$ in \mathbb{Z}_{q}.

- So, α and $\alpha+1$ are both of order n if and only if α is simultaneously a root of $\Phi_{n}(x)$ and $\Phi_{n}(x+1)$.
- $\Phi_{n}(x)$ and $\Phi_{n}(x+1)$ will share some irreducible factor modulo q whenever $\operatorname{Res}\left(\Phi_{n}(x), \Phi_{n}(x+1)\right) \equiv 0(\bmod q)$.
- It is also known that $\Phi_{n}(x)$ will split into linear factors mod q whenver $q \equiv 1(\bmod n)$.

Boiling Down The Problem

■ For prime $q>n$, an element $\alpha \in \mathbb{Z}_{\boldsymbol{q}}$ has order n if and only if α is a root of $\Phi_{n}(x)$ in \mathbb{Z}_{q}.

- So, α and $\alpha+1$ are both of order n if and only if α is simultaneously a root of $\Phi_{n}(x)$ and $\Phi_{n}(x+1)$.
- $\Phi_{n}(x)$ and $\Phi_{n}(x+1)$ will share some irreducible factor modulo q whenever $\operatorname{Res}\left(\Phi_{n}(x), \Phi_{n}(x+1)\right) \equiv 0(\bmod q)$.
- It is also known that $\Phi_{n}(x)$ will split into linear factors mod q whenver $q \equiv 1(\bmod n)$.
- We conclude that if we find a prime $q \equiv 1(\bmod n)$ that divides $\operatorname{Res}\left(\Phi_{n}(x), \Phi_{n}(x+1)\right)$, there are consecutive elements of order n modulo q.

Boiling Down The Problem, cont.

■ For the remainder of this talk, we say Γ_{n} for $\operatorname{Res}\left(\Phi_{n}(x), \Phi_{n}(x+1)\right)$.

Boiling Down The Problem, cont.

■ For the remainder of this talk, we say Γ_{n} for $\operatorname{Res}\left(\Phi_{n}(x), \Phi_{n}(x+1)\right)$.

- We have

$$
\begin{aligned}
\Gamma_{n}=\operatorname{Res}\left(\Phi_{n}(x), \Phi_{n}(x+1)\right) & =\prod_{(i, n)=1} \prod_{(j, n)=1}\left(\zeta_{n}^{i}-\zeta_{n}^{j}+1\right) \\
& =\prod_{(i, n)=1} N\left(\zeta_{n}-\zeta_{n}^{i}+1\right) .
\end{aligned}
$$

Boiling Down The Problem, cont.

■ For the remainder of this talk, we say Γ_{n} for $\operatorname{Res}\left(\Phi_{n}(x), \Phi_{n}(x+1)\right)$.

- We have

$$
\begin{aligned}
\Gamma_{n}=\operatorname{Res}\left(\Phi_{n}(x), \Phi_{n}(x+1)\right) & =\prod_{(i, n)=1} \prod_{(j, n)=1}\left(\zeta_{n}^{i}-\zeta_{n}^{j}+1\right) \\
& =\prod_{(i, n)=1} N\left(\zeta_{n}-\zeta_{n}^{i}+1\right) .
\end{aligned}
$$

- We are thus concerned with finding prime divisors of these norms which are 1 modulo n.

Lemmas

Lemma

For each $n>6, L_{n}$ has a primitive, odd prime divisor p such that $p \equiv 1(\bmod 2 n)$.

Lemmas

Lemma

For each $n>6, L_{n}$ has a primitive, odd prime divisor p such that $p \equiv 1(\bmod 2 n)$.

Lemma (Konvolina)
For n odd, $L_{n}=\prod_{i=1}^{n}\left(\zeta_{n}^{2 i}+\zeta_{n}^{i}-1\right)=\prod_{d \mid n} N\left(\zeta_{d}-\zeta_{d}^{d-1}+1\right)$.

Lemmas

Lemma

For each $n>6, L_{n}$ has a primitive, odd prime divisor p such that $p \equiv 1(\bmod 2 n)$.

Lemma (Konvolina)
For n odd, $L_{n}=\prod_{i=1}^{n}\left(\zeta_{n}^{2 i}+\zeta_{n}^{i}-1\right)=\prod_{d \mid n} N\left(\zeta_{d}-\zeta_{d}^{d-1}+1\right)$.

Lemma

For any $n>6$, every primitive prime divisor p of M_{n} satisfies $p \equiv 1$ $(\bmod n)$

Proof

- Suppose p is a primitive prime divisor of $M_{n}=2^{n}-1$.

Proof

- Suppose p is a primitive prime divisor of $M_{n}=2^{n}-1$.

■ We have $2^{n} \equiv 1(\bmod p)$, so $\operatorname{ord}_{p}(2) \mid n$.

Proof

- Suppose p is a primitive prime divisor of $M_{n}=2^{n}-1$.

■ We have $2^{n} \equiv 1(\bmod p)$, so $\operatorname{ord}_{p}(2) \mid n$.

- If $\operatorname{ord}_{p}(2)=d<n$, then $p \mid 2^{d}-1$, which is a contradiction.

Proof

- Suppose p is a primitive prime divisor of $M_{n}=2^{n}-1$.
- We have $2^{n} \equiv 1(\bmod p)$, so $\operatorname{ord}_{p}(2) \mid n$.

■ If $\operatorname{ord}_{p}(2)=d<n$, then $p \mid 2^{d}-1$, which is a contradiction.
$■$ We conclude that $\operatorname{ord}_{p}(2)=n$, so $n\left|\left|\mathbb{Z}_{p}^{\times}\right|=p-1\right.$, and $p \equiv 1(\bmod n)$.

Outline

1 Introduction and Inspiration

2 Background and Methods

3 Results

- Prime Divisors of the Resultant
- Analytic Bounds on Relevant Prime Divisors

4 Further Interests

Results

Theorem

There exists a prime q such that \mathbb{Z}_{q} contains consecutive primitive nth roots of unity if and only if $n \neq 1,2,3,6$.

Observe, from our slides on boiling down the problem, that this statement is equivalent to the following:

We prove this theorem for $n>6$ in three cases:

Results

Theorem

There exists a prime q such that \mathbb{Z}_{q} contains consecutive primitive nth roots of unity if and only if $n \neq 1,2,3,6$.

Observe, from our slides on boiling down the problem, that this statement is equivalent to the following:
Theorem
There exists a prime $q \equiv 1(\bmod n)$ dividing Γ_{n} if and only if $n \neq 1,2,3,6$.

We prove this theorem for $n>6$ in three cases:

Results

Theorem

There exists a prime q such that \mathbb{Z}_{q} contains consecutive primitive nth roots of unity if and only if $n \neq 1,2,3,6$.

Observe, from our slides on boiling down the problem, that this statement is equivalent to the following:
Theorem
There exists a prime $q \equiv 1(\bmod n)$ dividing Γ_{n} if and only if $n \neq 1,2,3,6$.

We prove this theorem for $n>6$ in three cases:

- n is odd.

Results

Theorem

There exists a prime q such that \mathbb{Z}_{q} contains consecutive primitive nth roots of unity if and only if $n \neq 1,2,3,6$.

Observe, from our slides on boiling down the problem, that this statement is equivalent to the following:
Theorem
There exists a prime $q \equiv 1(\bmod n)$ dividing Γ_{n} if and only if $n \neq 1,2,3,6$.

We prove this theorem for $n>6$ in three cases:

- n is odd.

■ $n=2 k$ where k is odd.

Results

Theorem

There exists a prime q such that \mathbb{Z}_{q} contains consecutive primitive nth roots of unity if and only if $n \neq 1,2,3,6$.

Observe, from our slides on boiling down the problem, that this statement is equivalent to the following:
Theorem
There exists a prime $q \equiv 1(\bmod n)$ dividing Γ_{n} if and only if $n \neq 1,2,3,6$.

We prove this theorem for $n>6$ in three cases:

- n is odd.

■ $n=2 k$ where k is odd.

- $n \equiv 0(\bmod 4)$.

The Proof

- First we suppose n is odd. By a previous lemma, the nth Lucas number has a primitive prime divisor q, where $q \equiv 1$ $(\bmod 2 n)$.

The Proof

- First we suppose n is odd. By a previous lemma, the nth Lucas number has a primitive prime divisor q, where $q \equiv 1$ $(\bmod 2 n)$.
- Observe that

$$
\begin{aligned}
& L_{n}=\prod_{i=1}^{n}\left(\zeta_{n}^{2 i}+\zeta_{n}^{i}-1\right)=\prod_{d \mid n} N\left(\zeta_{d}-\zeta_{d}^{d-1}+1\right), \text { and } \\
& N\left(\zeta_{n}-\zeta_{n}^{n-1}+1\right) \mid \Gamma_{n} .
\end{aligned}
$$

The Proof

- First we suppose n is odd. By a previous lemma, the nth Lucas number has a primitive prime divisor q, where $q \equiv 1$ $(\bmod 2 n)$.
- Observe that

$$
\begin{aligned}
& L_{n}=\prod_{i=1}^{n}\left(\zeta_{n}^{2 i}+\zeta_{n}^{i}-1\right)=\prod_{d \mid n} N\left(\zeta_{d}-\zeta_{d}^{d-1}+1\right) \text {, and } \\
& N\left(\zeta_{n}-\zeta_{n}^{n-1}+1\right) \mid \Gamma_{n} . \\
& \text { If } q \nmid N\left(\zeta_{n}-\zeta_{n}^{n-1}+1\right) \text {, then } q \mid N\left(\zeta_{d}-\zeta_{d}^{d-1}+1\right) \text { for some } \\
& d<n .
\end{aligned}
$$

The Proof

- First we suppose n is odd. By a previous lemma, the nth Lucas number has a primitive prime divisor q, where $q \equiv 1$ $(\bmod 2 n)$.
- Observe that

$$
L_{n}=\prod_{i=1}^{n}\left(\zeta_{n}^{2 i}+\zeta_{n}^{i}-1\right)=\prod_{d \mid n} N\left(\zeta_{d}-\zeta_{d}^{d-1}+1\right), \text { and }
$$

$$
N\left(\zeta_{n}-\zeta_{n}^{n-1}+1\right) \mid \Gamma_{n}
$$

- If $q \nmid N\left(\zeta_{n}-\zeta_{n}^{n-1}+1\right)$, then $q \mid N\left(\zeta_{d}-\zeta_{d}^{d-1}+1\right)$ for some $d<n$.
- This implies that $q \mid L_{d}$, which is a contradiction!

The Proof

- First we suppose n is odd. By a previous lemma, the nth Lucas number has a primitive prime divisor q, where $q \equiv 1$ $(\bmod 2 n)$.
- Observe that

$$
\begin{aligned}
& L_{n}=\prod_{i=1}^{n}\left(\zeta_{n}^{2 i}+\zeta_{n}^{i}-1\right)=\prod_{d \mid n} N\left(\zeta_{d}-\zeta_{d}^{d-1}+1\right), \text { and } \\
& N\left(\zeta_{n}-\zeta_{n}^{n-1}+1\right) \mid \Gamma_{n} .
\end{aligned}
$$

■ If $q \nmid N\left(\zeta_{n}-\zeta_{n}^{n-1}+1\right)$, then $q \mid N\left(\zeta_{d}-\zeta_{d}^{d-1}+1\right)$ for some $d<n$.

- This implies that $q \mid L_{d}$, which is a contradiction!

■ We may conclude that $q \mid \Gamma_{n}$, so modulo q there are consecutive primitive nth roots of unity.

The Proof, cont.

The case where $n=2 k$, where k is odd, follows easily from the following fact.

Lemma

Whenever k is odd, $\Gamma_{2 k}=\Gamma_{k}$.

The Proof, cont.

The case where $n=2 k$, where k is odd, follows easily from the following fact.

Lemma

Whenever k is odd, $\Gamma_{2 k}=\Gamma_{k}$.

The Proof, cont.

The case where $n=2 k$, where k is odd, follows easily from the following fact.

Lemma

Whenever k is odd, $\Gamma_{2 k}=\Gamma_{k}$.
We now treat the case where $4 \mid n$.

Prime Divisors of the Resultant

The Proof, cont.

■ Suppose $4 \mid n$, and see that $N\left(\zeta_{n}-\zeta_{n}^{(n / 2)+1}+1\right) \mid \Gamma_{n}$.

The Proof, cont.

- Suppose $4 \mid n$, and see that $N\left(\zeta_{n}-\zeta_{n}^{(n / 2)+1}+1\right) \mid \Gamma_{n}$.
- Apply the observation that

$$
\begin{aligned}
N\left(\zeta_{n}-\zeta_{n}^{(n / 2)+1}+1\right) & =N\left(\zeta_{n}-(-1) \zeta_{n}+1\right)=N\left(2 \zeta_{n}+1\right) \\
& =\prod_{(i, n)=1}\left(2 \zeta_{n}^{i}+1\right)=\prod_{(i, n)=1}-\zeta_{n}^{i}\left(-2-\zeta_{n}^{-i}\right) \\
& =\prod_{(i, n)=1}\left(-2-\zeta_{n}^{-i}\right)=\Phi_{n}(-2)
\end{aligned}
$$

The Proof, cont.

- Suppose $4 \mid n$, and see that $N\left(\zeta_{n}-\zeta_{n}^{(n / 2)+1}+1\right) \mid \Gamma_{n}$.
- Apply the observation that

$$
\begin{aligned}
N\left(\zeta_{n}-\zeta_{n}^{(n / 2)+1}+1\right) & =N\left(\zeta_{n}-(-1) \zeta_{n}+1\right)=N\left(2 \zeta_{n}+1\right) \\
& =\prod_{(i, n)=1}\left(2 \zeta_{n}^{i}+1\right)=\prod_{(i, n)=1}-\zeta_{n}^{i}\left(-2-\zeta_{n}^{-i}\right) \\
& =\prod_{(i, n)=1}\left(-2-\zeta_{n}^{-i}\right)=\Phi_{n}(-2) .
\end{aligned}
$$

- As $4 \mid n$, it can be shown that $\Phi_{n}(-2)=\Phi_{n}(2)$, which is the primitive part of the nth Mersenne number.

The Proof, cont.

- Suppose $4 \mid n$, and see that $N\left(\zeta_{n}-\zeta_{n}^{(n / 2)+1}+1\right) \mid \Gamma_{n}$.
- Apply the observation that

$$
\begin{aligned}
N\left(\zeta_{n}-\zeta_{n}^{(n / 2)+1}+1\right) & =N\left(\zeta_{n}-(-1) \zeta_{n}+1\right)=N\left(2 \zeta_{n}+1\right) \\
& =\prod_{(i, n)=1}\left(2 \zeta_{n}^{i}+1\right)=\prod_{(i, n)=1}-\zeta_{n}^{i}\left(-2-\zeta_{n}^{-i}\right) \\
& =\prod_{(i, n)=1}\left(-2-\zeta_{n}^{-i}\right)=\Phi_{n}(-2) .
\end{aligned}
$$

- As $4 \mid n$, it can be shown that $\Phi_{n}(-2)=\Phi_{n}(2)$, which is the primitive part of the nth Mersenne number.
- All primitive prime divisors q of the nth Mersenne number satisfy $q \equiv 1(\bmod n)$, and the proof is complete.

Bounding the Relevant Prime Divisors

Definition

Let \mathfrak{d}_{n} be the number of prime divisors $q \equiv 1(\bmod n)$ of Γ_{n}, counted with multiplicity.

Bounding the Relevant Prime Divisors

Definition

Let \mathfrak{d}_{n} be the number of prime divisors $q \equiv 1(\bmod n)$ of Γ_{n}, counted with multiplicity.

Lemma
The resultant Γ_{n} satisfies $\left|\Gamma_{n}\right| \leq 3^{\varphi(n)^{2}}$.

Bounding the Relevant Prime Divisors

Definition

Let \mathfrak{d}_{n} be the number of prime divisors $q \equiv 1(\bmod n)$ of Γ_{n}, counted with multiplicity.

Lemma
The resultant Γ_{n} satisfies $\left|\Gamma_{n}\right| \leq 3^{\varphi(n)^{2}}$.

Corollary

If $q \mid \Gamma_{n}$, then $q \leq 3^{\varphi(n)^{2}}$.

Proposition

The following bound holds for \mathfrak{d}_{n} :

$$
\mathfrak{d}_{n} \leq \varphi(n)^{2} \frac{\ln (3)}{\ln (n+1)}
$$

If $n=p$ is prime, we have the refined bound

$$
\mathfrak{d}_{p} \leq(p-1)^{2} \frac{\ln (3)}{\ln (2 p+1)}
$$

Outline

1 Introduction and Inspiration

2 Background and Methods

3 Results
■ Prime Divisors of the Resultant

- Analytic Bounds on Relevant Prime Divisors

4 Further Interests

Further Interests

Conjecture

For $n \neq 1,2,3,6$, all primes $q>n$ dividing Γ_{n} satisfy $q \equiv 1$ $(\bmod n)$.

Further Interests

Conjecture

For $n \neq 1,2,3,6$, all primes $q>n$ dividing Γ_{n} satisfy $q \equiv 1$ $(\bmod n)$.

Conjecture

Let $n \neq 1,2,3,6$, and let q be a prime. Whenever α and $\alpha+1$ are primitive nth roots of unity in a finite field $\mathbb{F}_{q^{r}}$ where $q>n$, we have $\alpha \in \mathbb{F}_{\boldsymbol{q}}$.

Further Interests

The following proposition is the beginning of an argument towards proving our first conjecture when $n=p$ is prime:

Proposition

When p is prime, $N\left(\zeta_{p}-\zeta_{p}^{j}+1\right) \equiv 1(\bmod p)$ for each
$1 \leq j \leq p-1$.
It is much harder to reach the same conclusion for the individual prime divisors of these norms.

Further Interests

There seems to be a nice relationship between the multiplicity of a prime divisor q of the resultant and the behavior of $\Phi_{n}(x)$ when considered modulo q :

Further Interests

There seems to be a nice relationship between the multiplicity of a prime divisor q of the resultant and the behavior of $\Phi_{n}(x)$ when considered modulo q :

Conjecture

For p prime, let k be the largest integer such that $q^{k} \mid \Gamma_{p}$ for some prime $q \equiv 1(\bmod p)$. If $k<\frac{p-1}{2}$, then there exist exactly k distinct elements $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{Z}_{q}$ such that the order of α_{i} and $\alpha_{i}+1$ is p for each $1 \leq i \leq k$. If $k \geq \frac{p-1}{2}$, there are exactly $\frac{p-1}{2}$ distinct elements $\alpha_{1}, \ldots, \alpha_{\frac{p-1}{2}} \in \mathbb{Z}_{q}$ such that the order of α_{i} and $\alpha_{i}+1$ is p for each $1 \leq i \leq \frac{p-1}{2}$.

