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Abstract This paper is based on the study of the set of nondecomposable integer
solutions in a Gomory corner polyhedron, which was recently used in a reformu-
lation method for integer linear programs. In this paper, we present an algorithm
for efficiently computing this set. We precompute a database of nondecompos-
able solutions for cyclic groups up to order 52. As a second application of this
database, we introduce an algorithm for computing nontrivial simultaneous lifting
coefficients. The lifting coefficients are exact for a discrete relaxation of the integer
program that consists of a group relaxation plus bound constraints.

Keywords: Gomory corner polyhedron – irreducible group solutions – simulta-
neous lifting

1 Introduction

At the end of the 1960s, Ralph Gomory proposed an algebraic approach for solv-
ing integer programs via the use of group relaxations (Gomory, 1969). The key
object which is underlying this approach is the so-called Gomory corner polyhe-
dron associated with an integer programming problem,

max c>x
s.t. Ax = b

x ∈ Zn
+.

(1)
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Given a selection of linearly independent columns of A forming the square matrix
AB, we can relax the set of feasible integral points of the IP problem to the set

S =
{

x ∈ Zn : ABxB + AB̄xB̄ = b, xB̄ ≥ 0
}
,

i.e., the nonnegativity constraints for the variables xB are dropped while integrality
is maintained both for the set B and its complementary set B̄. The optimization
problem over the set S is called a group relaxation of the IP. Since the values of
xB are uniquely determined by the vector xB̄, the set S can be bijectively mapped
to the set

S ′ = {x ∈ Z|B̄|+ : AB̄xB̄ ≡ b (mod L(AB))},

where L(AB) =
{

ABz : z ∈ Z|B|
}

denotes the lattice generated by the column vectors
of AB.

The convex hull of the set S ′ is called the Gomory corner polyhedron (with
respect to the index set B). By studying the abelian group Z|B|/L(AB) and homo-
morphic images or cyclic subgroups of it, Gomory et al. provided insight into
the facet structure of the corner polyhedron. For instance, in his original paper,
Gomory (1969) gave a complete description of the facets of corner polyhedra re-
sulting from small cyclic groups. In fact, the investigations reveal many interesting
connections between the geometrical structures of an IP problem and correspond-
ing corner polyhedra. Despite the efforts made in examining the corner polyhedron
in the 1970s (Gomory and Johnson, 1972a,b) and the ones in recent years (Aráoz
et al., 2003; Gomory et al., 2003; Gomory and Johnson, 2003), we are still far
away from turning this theoretical knowledge into an algorithmic tool for solving
large IP instances.

Recently, Köppe et al. (2004) introduced reformulations for an IP problem
based on the corner polyhedron using so-called irreducible or nondecomposable
solutions to a group relaxation and presented possible algorithms based on these
ideas. We will briefly summarize their approach.

Let us consider a set of the form

S (d) =
{

x ∈ Zn
+ : Bx ≡ d (mod L(∆))

}
,

where ∆ ∈ Zr×r is a regular diagonal positive integer matrix, and B ∈ Zr×n, and
d ∈ Zr

+. In order to describe a reformulation of S (d), we need to introduce the
notion of irreducible solutions.

Definition 1. A non-zero vector x ∈ Zn
+ is an irreducible solution of S (d) if x ∈

S (d), and there is no other distinct nonzero x̃ ∈ S (d) with x̃ ≤ x. Every irreducible
vector x in S (0) is called homogeneous. An irreducible vector in S (d) is called
inhomogeneous whenever d , 0.

The reformulation is based on the fact that every point in S (d) can be written
as the sum of exactly one inhomogeneous irreducible solution of S (d) and a non-
negative integer combination of homogeneous irreducible solutions of S (0). If we
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collect the inhomogeneous vectors in the matrix C and the homogeneous vectors
in the matrix D, we can write S (d) as

S (d) = {x ∈ Zn
+ : x = Cλ + Dµ, 1>λ = 1, λ ∈ Zs

+, µ ∈ Z
t
+}.

Example 2. Consider the set X =
{
(x1, x2, x3) ∈ Z3

+ : 3x1 + 7x2 + 9x3 = 22
}
. By

taking the equation modulo 4, we obtain the valid group relaxation

S (2) =
{
(x1, x2, x3) ∈ Z3

+ : 3x1 + 3x2 + x3 ≡ 2 (mod 4)
}

yielding the following matrices of irreducibles:

C =

2 1 0 0
0 1 2 0
0 0 0 2

 and D =

1 0 4 3 2 1 0 0
0 1 0 1 2 3 4 0
1 1 0 0 0 0 0 4

 .
Thus, we can write

S (2) =
{

x ∈ Z3
+ : x = Cλ + Dµ,

∑
1≤i≤4

λi = 1,

λ1, . . . , λ4 ∈ {0, 1}, µ1, . . . , µ8 ∈ Z+

}
,

which is the feasible region of the reformulated IP.

By aggregating variables with the same coefficients into a new variable, the
reformulation can be written in a more compact way.

In Köppe et al. (2004) two algorithmic schemes that make use of the reformu-
lations are presented. The first one, the dual scheme, computes a group relaxation
of constraints that are tight at some fractional point und uses the reformulation to
cut off this point. The second one, the primal scheme, starts with an integral tableau
and the corresponding basic feasible solution x0. A reformulation of a group re-
laxation is then used to update the tableau and to check for a column that provides
an augmenting vector v. By pivoting in v in an integer fashion, a new tableau is
obtained.

The renewed interest in irreducible solutions for Gomory group relaxations
led to the question for further applications in the field of IP theory. In the third
section, we present a simultaneous lifting procedure using precomputed tables of
irreducible group solutions. First, we describe the general lifting procedure we will
refer to in the later section:

Let P ⊂ R|N |+ be the convex hull of all feasible solutions to a linear integer
programming problem and consider a subset S of the variable index set N of that
polytope. Suppose we know that

∑
i∈S πixi ≤ π0 is a valid inequality of the polytope

PS = P ∩
{

x ∈ R|N | : x j = 0 ∀ j ∈ N \ S
}
. It is a natural question to ask if

we can strengthen the inequality by finding coefficients π j, j ∈ N \ S , such that∑
i∈N πixi ≤ π0 is valid for P. The way to determine the missing coefficients is
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called lifting. Especially one is interested in finding facet-defining inequalities that
can arise from a lifting procedure. In general, this leads to computing a so-called
maximum lifting, i.e., a vector πN\S such that for no vector π̄N\S ≥ πN\S and distinct
from πN\S the lifted inequality is valid for P.

There is a polyhedral description of the maximum lifting vectors, but for our
purpose we only need the following

Property 3. Let P = conv
{

x ∈ Z|N |+ : Ax ≤ b
}

be a bounded polyhedron and let∑
i∈S⊂N πixi ≤ π0 be a valid inequality for PS = P∩

{
x ∈ R|N | : x j = 0 ∀ j ∈ N \S

}
.

Then πN\S is a lifting vector if it is contained in the polyhedron

Q =
{

y ∈ R|N\S | :
∑
i∈S

πixi +
∑

j∈N\S

y jx j ≤ π0 ∀x ∈ P ∩ Z|N |+
}
. (2)

We observe that Property 3 just restates the condition that the lifted inequality
is valid for the integral points in P.

As the polyhedral description of the lifting vectors requires an enumeration of
the integral points in the polytope P, it gives us no hint for a reasonable algorith-
mic tool to solve the optimization problem. If we could instead restrict ourselves to
a (comparatively) small number of vectors necessary to describe the lifting poly-
hedron this might turn out to be a computationally tractable approach for solving
the IP, e.g., by a cutting plane algorithm. We will outline in section 3 a method
to accomplish this task. The described method relies on our ability to determine a
database for irreducible group solutions.

2 Irreducible group solutions

In this section, we present an algorithm that enables us to compute the irreducible
group solutions for cyclic groups up to size 52. The algorithm builds upon some
theoretical results valid for irreducible solutions. Throughout this section, we con-
sider the master cyclic group problem

x1 + 2x2 + · · · + (n − 1)xn−1 ≡ k (mod n) (3)

in the additive group of the ring Zn = Z/nZ. If all irreducible solutions to equa-
tion (3) are given, we can extract the solutions of a subsystem of (3) by considering
the proper subspace of the variables x1, . . . , xn−1. On the other hand, if we have a
group equation where several variables belong to the same group element, we ag-
gregate all these variables into one new integer solution and then reexpand the
aggregated solution to the original space of variables, cf. Köppe et al. (2004).

The notion of irreduciblity is compatible with the action of group automor-
phisms on Zn. More precisely, if x is an irreducible solution to (3) and φ is a group
automorphism, then

φ(x) :=
(
xφ−1(1), . . . , xφ−1(n−1)

)
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is an irreducible solution to the group equation with right hand side φ(k). Using
this property, one can quickly recover the orbit orbn(x) = { φ(x) : φ : Zn → Zn is an
automorphism } from a solution x. The main advantage is that one needs to store
one solution from an orbit only.

For Zn, each automorphism of this group is induced by a unit element of this
ring, which means it has the form i 7→ l · i with l being a unit element, i.e.,
gcd(l, n) = 1. We now prove some statements about the ‖ ‖1-norm of irreducible
group solutions and about the relationship between homogeneous and inhomoge-
neous solutions.

Theorem 4. (i) Let x be a homogeneous irreducible solution to the master cyclic
group problem (3) in Zn. Then we have ‖x‖1 =

∑n−1
i=1 xi ≤ n.

(ii) If d is a proper divisor of n and if x is an inhomogeneous irreducible solution
with right hand side d, then ‖x‖1 ≤ n − d.

Both types of inequalities are tight.

Proof. (i) We consider an arbitrary decreasing sequence of the form x = x0 ≥ x1 ≥

· · · ≥ xk = 0 where xi − xi+1 = e j for some j = 1, . . . , n − 1. As x is irreducible,
none of the vectors x1, . . . , xk is a homogeneous solution. If two of these vectors,
say xl and xm, were inhomogeneous solutions with the same right hand side, then
the difference xl− xm would be a homogeneous solution being less than x, which is
impossible. Since there are n−1 inhomogeneous residue classes, we have k ≤ n−1,
i.e., ‖x‖1 ≤ n.

(ii) We again consider a sequence as we just did. Because of the irreducibility
of x, none of the vectors x1, . . . , xk is a homogeneous solution nor an inhomoge-
neous solution with right hand side d. The multiples 2d, . . . , n − d of d can occur
at most once as the right hand sides of the group equation. Moreover, for each
i = 1, . . . , d − 1 not all of the values i, i + d, i + 2d, . . . , i + n − 2d, i + n − d can be
attained as right hand sides, for otherwise there would be a nonnegative difference
of two vectors in the sequence yielding a group solution with right hand side d
contradicting the choice of x. Therefore we have

k ≤
(n
d
− 2
)
+ (d − 1)

(n
d
− 1
)
= d
(n
d
− 1
)
− 1 = n − d − 1

and, consequently, ‖x‖1 ≤ n − d. Of course, the inequality is also valid for the
automorphic images of d.

In the first case, the inequality is tight for x = ne1, in the second case x =
(n − d)en−1 gives a vector with maximum norm. ut

Theorem 5. Let x be a homogeneous solution with xi ≥ 1. Then the following
statements are equivalent:

(i) x is irreducible,
(ii) x′ = x − ei is an irreducible inhomogeneous solution.
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In this situation, we call x the inhomogenization of x′, whereas we call x′ the
homogenization of x.

Proof. The implication (i)⇒ (ii) is trivial. For the converse let us assume that x is
reducible, i.e., x = y+z with y, z being homogeneous. If we had yi > x′i and zi > x′i
then we would obtain yi + zi ≥ x′i + 2 > xi, which is impossible. But otherwise we
would have y ≤ x′ or z ≤ x′ contradicting the irreducibility of x′. ut

The previous theorem shows that the homogenization (or inhomogenization)
of a vector preserves irreducibility. If we add an arbitrary unit vector to an inhomo-
geneous irreducible solution this is no longer true. Instead, the following weaker
statement can be made.

Theorem 6. Let x be an inhomogeneous irreducible solution and assume that x′ =
x + ei is reducible for some i = 1, . . . , n − 1. If x′ = x1 + xh is a decomposition of
x′ with xh being homogeneous we have:

(i) x1 ≤ x,
(ii) x1 and xh are irreducible.

Proof. Part (i). Let us assume that x1
i > 0. Then we had xh

i ≤ xi and therefore,
xh ≤ x, which is absurd. It follows that x1 ≤ x.

Part (ii). From (i) we immediately obtain the irreducibility of x1. If xh was
reducible, i.e., xh = y+ z, we would again have y ≤ x or z ≤ x. Consequently, xh is
irreducible. ut

We now focus on the question of how irreducible group solutions can be (ef-
ficiently) computed. Theorem 5 ensures that it is easy to compute the inhomoge-
neous solutions from the homogeneous ones by simply decreasing positive com-
ponents by one unit. We can summarize this property in the following

Algorithm 7.

01: Input: set Hn of all irreducible homogeneous solutions of order n;
Output: set In of all irreducible inhomogeneous solutions of order n;

02: In ← ∅;
03: for all x ∈ Hn do
04: for all xi > 0 do
05: In ← In ∪ {x − ei}

06: end for;
07: end for;
08: Output In.

Theorem 8. Algorithm 7 is correct.

Proof. This is an immediate consequence of Theorem 5, because every inhomo-
geneous vector has a unique homogenization. ut
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Our computational experiments reveal that Alg. 7 runs fast in practice. Hav-
ing this in mind, the question of computing irreducible group solutions reduces
to computing efficiently the homogeneous vectors. We will present an enumera-
tive algorithm which exploits the group structure of the given problem. The key
idea is that we start with the irreducible vectors with ‖ ‖1-norm equal to 2, which
are precisely the vectors ei + en−i. By successively adding vectors of the form
e j + ek − el, l ≡ j+ k (mod n), we compute the vectors up to the norm n according
to Theorem 4. We can accelerate this procedure by augmenting only the represen-
tatives of the orbits, but using the complete orbits as certificates for reducibility.
Let orbn(x) denote the orbit of the vector x under the action of the automorphism
group of Zn. In pseudocode, the algorithm reads as follows:
Algorithm 9.

01: Input: n;
Output: set Hn of all irreducible homogeneous solutions of order n and a set Rn
of representatives;

02: Hn ← ∅;
03: Rn ← ∅;

Initialization:
04: for i = 1, . . . , b n

2 c do
05: if x = ei + en−i < Hn then
06: Hn ← Hn ∪ orbn(x);
07: Rn ← Rn ∪ {x};
08: end if
09: end for;

Main iteration:
10: for i = 2, . . . , n − 1 do
11: for all x ∈ Rn ∩ {v : ‖v‖1 = i} do
12: for all y = x + e j + ek − el ≥ 0, l ≡ j + k (mod n), do
13: if @ z ∈ Hn, z ≤ y, then
14: Hn ← Hn ∪ orbn(y);
15: Rn ← Rn ∪ {y};
16: end if;
17: end for;
18: end for;
19: end for;
20: Output Hn, Rn.

Theorem 10. Algorithm 9 is correct.

Proof. Because the set { v ∈ Zn−1
+ : ‖v‖1 ≤ n } is finite, the algorithm terminates.

We will show that the algorithm correctly computes the irreducibles for every norm
from 2 to n. In the initialization step the algorithm clearly computes all irreducible
solutions of norm equal to 2. Let y be an arbitrary irreducible homogeneous solu-
tion of norm ‖y‖1 ≥ 3 and y ≥ e j + ek, and let us assume that all irreducible vectors
with a smaller norm have already been computed. Then x = y−e j−ek+e j+k (mod n)

is an irreducible vector with ‖x‖1 < ‖y‖1. Therefore, an automorphic image x′ of x
must have been added to Rn in line 7 or 15. Considering x′ in line 11, the algorithm
computes an automorphic image y′ of y, so y ∈ orbn(y′) ⊂ Hn. For every reducible
vector occurring during computation a reducing vector will be found in line 13.
Therefore Hn and Rn have the assumed properties. ut
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Table 1 shows the cardinalities of Rn up to n = 52 and the computation times
in seconds on a Sun Fire 480R with 1.05 GHz. The database of all irreducible
group solutions is available on the Internet (Jach et al., 2004). The total size of the
database is 380 MiB (compressed).

Table 1. Cardinalities and computation times for sets of irreducible group solutions

n |Rn | Time n |Rn | Time n |Rn | Time

2 1 19 442 36 60520 74
3 2 20 1093 37 34175 47
4 4 21 1109 38 73657 109
5 4 22 1751 39 71537 117
6 11 23 1326 40 119537 217
7 9 24 3769 1 41 76129 151
8 22 25 2489 1 42 234377 541
9 23 26 4951 2 43 111781 280

10 43 27 4682 2 44 238239 662
11 36 28 8372 3 45 246641 745
12 107 29 5893 3 45 344600 1182
13 70 30 19218 12 47 233953 863
14 166 31 9347 7 48 621259 2640
15 200 32 19072 15 49 362268 1652
16 302 33 20441 19 50 791468 3924
17 245 34 31762 31 51 655441 3556
18 693 35 28186 31 52 984646 5653

Remark. In the next section we also consider solutions which have a component
for the zero element 0 of Zn. In this case, we add 1 · 0 ≡ 0 (mod n) to the set of
homogeneous irreducible solutions.

3 Simultaneous lifting using group irreducibles

This section is devoted to demonstrating a novel application of irreducible group
solutions to polyhedral combinatorics. We explain how to obtain lifting coeffi-
cients from a precomputed table of irreducible homogeneous group solutions. We
consider integer programs of the form

max c>x

s.t. Ax = b

0 ≤ x ≤ u

x ∈ Zn,

(4)

where A ∈ Zm×n, b ∈ Zm and c ∈ Zn. In our technique, we will relax the equations
Ax = b by reading them modulo a vector d ∈ Zm, so that we obtain an equation in
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the abelian group Gd = Zd1 × · · · × Zdm . In this process, several columns ai of the
constraint matrix A could be mapped to the same group element; to handle this,
we consider a mapping that aggregates the corresponding components xi. More
precisely, we want to consider difference vectors x̄ = x2 − x1 ∈ Zn of feasible
points of (4); therefore, we need to take the sign of the individual components of
x into consideration.

Definition 11. Let A = (a1, . . . , an) ∈ Zm×n be a matrix and let d ∈ Zm
>0 be a

positive integer vector. Let D denote the diagonal matrix where d = diag(D) such
that we have the abelian group Gd = Zd1 × · · · × Zdm � Z

m/L(D). We define a
mapping fd : Zn → Z|Gd |

+ in the following way: Let x̄ ∈ Zn. In order to define
fd(x̄) = x̂ we identify each column vector sgn(x̄i)ai (where sgn(0) = 0) with its
canonical image in the group Gd and aggregate the components x̄i of x̄ whose
matrix columns have the same image g in the component x̂g, i.e., we have

x̂g =
∑

i : sgn(x̄i)ai ≡ g (mod D)

|x̄i| ∀g ∈ Gd.

We will call the vector x̂ the group image of the solution x̄ with respect to the
modulus vector d.

Obviously, the above defined group image yields a homogeneous group solu-
tion in the group Gd (with an additional component for the zero element in Gd) if
Ax̄ = (λ1d1, . . . , λmdm) for some λ ∈ Zm. Conversely, every homogeneous group
solution x̂ can be mapped back to some vector x̄ satisfying Ax̄ = (λ1d1, . . . , λmdm),
provided that each positive component of x̂ corresponds to some column ±ai of
the matrix A and no column is used with both signs.

In the next theorem we show that it suffices to consider preimages of irre-
ducible group solutions in order to obtain a polyhedral description for the lifting
vectors.

Theorem 12. Consider the polytope

P = conv
{

x ∈ Zn : Ax = b, 0 ≤ x ≤ u
}

with integral data A, b, u. For a subset S of the index set N let x∗ be a point in
PS = P ∩ {x ∈ Zn

+ : x j = 0 ∀ j ∈ N \ S }. Further let
∑

i∈S πixi ≤ π0 be a valid
inequality for PS which is tight for x∗. Then, given any d ∈ Zm

>0, every feasible
point in the polyhedron

Q̃d =
{
y ∈ R|N\S | : y>zN\S + π

>
S zS ≤ 0 ∀z ∈ Zn, 0 ≤ x∗ + z ≤ u, such that

ẑ = fd(z) is an irreducible solution to
∑

g∈Gd
ẑgg = 0

} (5)

is a lifting vector.
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Proof. We will show Q̃d ⊂ Q where Q denotes the polyhedron defined in equa-
tion (2). To this end, let y ∈ Q̃d. We show that∑

i∈S

πixi +
∑

j∈N\S

y jx j ≤ π0 for x ∈ P ∩ Zn.

Let x be an arbitrary vector in P ∩ Zn and let D be the diagonal matrix where
d = diag(D). For the difference vector x̄ = x− x∗ we have Ax̄ = 0. Thus, the group
image fd(x̄) is a homogeneous group solution which can be decomposed into a
sum of irreducible solutions, say fd(x̄) =

∑k
j=1 h j. Since we have

( fd(x̄))g =
∑

i : sgn(x̄i)ai ≡ g (mod D)

|x̄i| =

k∑
j=1

h j
g ∀g ∈ Gd,

we can partition each number |x̄i|, where sgn(x̄i)ai ≡ g (mod D), into a sum |x̄i| =∑k
j=1 |x̄

j
i | such that each x̄ j

i has the same sign as x̄i or is equal to 0, and that∑
i : sgn(x̄i)ai ≡ g (mod D)

|x̄ j
i | = h j

g ∀ j = 1, . . . , k, ∀g ∈ Gd.

By the definition of the numbers x̄ j
i , we see that for each h j we have a preimage

z j = (x̄ j
1, . . . , x̄

j
n) such that

∑k
j=1 z j = x̄ and that x̄, z1, . . . , zk all lie in the same

orthant of Rn.
From 0 ≤ x∗ + x̄ ≤ u and the orthant condition we immediately obtain 0 ≤

x∗ + z j ≤ u for each z j, which therefore yields a constraint in the definition of Q̃d.
Because y ∈ Q̃d, we have

y>z j
N\S + π

>
S z j

S ≤ 0 for j = 1, . . . , k. (6)

Adding up the inequalities (6) and the equation π>S x∗S = π0 gives

y>xN\S + π
>
S xS = y>

(∑k
j=1 z j

N\S

)
+ π>S

(∑k
j=1 z j

S + x∗S
)
≤ π0,

completing the proof. ut

Remark 13. Because the number of irreducible group solutions seems to grow ex-
ponentially with the group order, the polyhedral description (5) is of exponential
size. Clearly lifting coefficients could also be obtained from the linear program
proposed by Gomory (1969), which only has Θ(|Gd |

2) constraints. However, the
lifting procedure of Theorem 12 considers a discrete relaxation of the integer pro-
gram that consists of a group relaxation and bound constraints. The lifting coeffi-
cients are optimal for this discrete relaxation. This means that the liftings obtained
from it are potentially stronger than those that could be obtained from a pure group
relaxation (for the same group order), especially for problems with very low vari-
able bounds.
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We next illustrate the lifting procedure on two knapsack problem instances.

Example 14. Let us consider the problem

P = conv
{

x ∈ {0, 1}5 : x1 + 2x2 + 3x3 + 4x4 + 5x5 = 9
}

= conv{(0, 0, 0, 1, 1), (0, 1, 1, 1, 0), (1, 0, 1, 0, 1)}.

We can take x∗ = (0, 0, 0, 1, 1)> and the inequality x4 + x5 ≤ 2 valid for PS =

P ∩
{

x ∈ R5 : x1 = x2 = x3 = 0
}
. Without having chosen a modulus yet, we

already know that we only have to consider vectors z in the orthant {x1, x2, x3 ≥ 0,
x4, x5 ≤ 0} because starting from x∗ we cannot decrease x1, x2, and x3, nor increase
x4 and x5.

If we take the modulus m = 3, for instance, the resulting system of inequalities
consists of the inequalities y3 ≤ 0, y1 + y2 ≤ 0, y1 ≤ 1, y2 ≤ 1, and −2 ≤ 0
coming from the vectors z1 = (0, 0, 1, 0, 0), z2 = (1, 1, 0, 0, 0), z3 = (1, 0, 0,−1, 0),
z4 = (0, 1, 0, 0,−1), and z5 = (0, 0, 0,−1,−1), respectively. Hence, we get the
lifting coefficients (1,−1, 0) and (−1, 1, 0) (or any convex combination of these
two). The resulting inequalities x1 − x2 + x4 + x5 ≤ 2 and −x1 + x2 + x4 + x5 ≤ 2
are valid for P, but they do not define facets of P.

If we select m = 7, the only possibilities for choosing a vector z are z1 =

(1, 0, 1,−1, 0) and z2 = (0, 1, 1, 0,−1) yielding the system y1+ y3 ≤ 1 and y2+ y3 ≤

1. As a result for the lifting coefficients we obtain the solutions y1 = (1, 1, 0) and
y2 = (0, 0, 1) (or any convex combination of these two). The inequalities x1 + x2 +

x4 + x5 ≤ 2 and x3 + x4 + x5 ≤ 2 both are facets of P.

Example 15. Let P = conv
{
x ∈ Z4

+ : 3x1+5x2+17x3+23x4 = 94, x ≤ (3, 5, 5, 4)>
}
.

For x∗ = (3, 0, 5, 0) we have the inequality x1 + x3 ≤ 8 valid for PS = P∩ {x ∈ R5 :
x2 = x4 = 0}. If we take m = 29 as the modulus, the system of inequalities in Q̃m

reduces to
y4 ≤

1
2 ,

y2 ≤ 1
2 ,

3y2 + 2y4 ≤ 1.

Nonnegative feasible solutions are y1 = ( 1
3 , 0) and y2 = (0, 1

2 ) yielding the follow-
ing lifted inequalities:

3x1 + x2 + 3x3 ≤ 24,
2x1 + 2x3 + x4 ≤ 16.

Both inequalities do not define a facet of P, but the first one cuts off the fractional
point (3, 5, 60

17 , 0) of the LP relaxation of P. The second inequality does not cut off
a fractional point.

In general, the lifting procedure via group solutions can be used to obtain non-
trivial lifting coefficients. In particular, this applies to the case when it is not known
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if the original inequality, which is valid for the subspace polytope only, is also valid
for the polytope P. Below we experiment with instances of the kind

P = conv
{

x ∈ Zn
+ : a>x = b, x ≤ u

}
(7)

with a ∈ Zn, u ∈ Zn
+, and b ∈ Z.

For each such instance we generate a facet of an appropriate subspace poly-
tope PS and then apply the lifting algorithm based on our group database. More
precisely, we follow

Algorithm 16.
Input: An IP polytope P, a valid inequality for a subspace polytope PS which is
tight at a point x∗ ∈ PS .
Output: A lifted inequality valid for P, or failure.

1. Fix a modulus m for the group relaxation.
2. For the modulus m read off the irreducible group solutions possible as group

images from the database.
3. Generate the polyhedron Q̃d = Q̃m as defined in equation (5).
4. Select an auxiliary objective function w ∈ R|N\S and solve the linear program

max
{
w>y : y ∈ Q̃m

}
to determine a vertex y of Q̃m. Return the optimal solu-

tion y if it exists; otherwise return failure.

We apply the algorithm to a variety of examples where we experiment with
the following parameters: the dimension n ∈ {10, 15, 20, 30} of the problem and
the uniform upper bound u ∈ {1, 2} on the variables. In order to simplify our
computational efforts, we always choose the subspace polytope to lie in the space
spanned by the first three variables, and the right hand side b is chosen in a way
that (x1, x2, x3) = (1, 1, 1) is a feasible solution for which the original inequality is
tight.

In the case u = 1 we consider both an original inequality that is valid for P,

x1 + x2 + x3 ≤ 3, (8)

and one which is not valid for P,

x1 − x2 ≤ 0, (9)

whereas in the case u = 2 we only consider inequality (8), which is not valid for P
in this case.

For each choice of parameters, we randomly generate 30 feasible instances of
the 1-row equality problem (7). The coefficients a1, . . . , an are randomly chosen
between −50 and 50. Then the right-hand side is chosen in a way that the point
(1, 1, 1) is a feasible solution. For all generated instances, we checked that the
inequality (9) is indeed not valid.

In our experiment, we wish to investigate how the quality of the lifting proce-
dure depends on the choice of the modulus m. The larger the modulus, the more
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irreducible group solutions exist, so the linear programs to be solved for obtaining
the lifting coefficients become larger, thus harder to solve. In order to see whether
the increased computational effort pays off, we carry out the computations for all
moduli m in the range from 2 to 30. For a given modulus m, the polyhedron Q̃m can
be empty or non-empty. The former case occurs when in the definition (5) of the
polyhedron Q̃d there occurs a vector z that has non-zero components in the set S
only; such a vector can lead to a contradictory constraint π>S zS ≤ 0.

In the case of a non-empty polyhedron Q̃m, every vertex of Q̃m yields a valid
lifting vector. We evaluate the strength of the corresponding lifted inequality by
computing whether the inequality cuts off a fractional point of the LP relaxation
of P. If this happens to be true, we regard the lifted inequality as nontrivial.

Example 17. We first show one of the generated instances for dimension n = 10.
We consider the polyhedron

P = conv
{

x ∈ Z10
+ : 9x1 + 14x2 + 16x3 + 39x4 + 2x5 + 28x6 + 11x7

− 20x8 − 13x9 − 37x10 = 39, xi ≤ u ∀i = 1, . . . , 10
}

where u = 1. For the feasible point (x1, x2, x3) = (1, 1, 1) of the subspace poly-
hedron P{1,2,3}, we start with the inequality x1 + x2 + x3 ≤ 3. In Table 2 we show
the lifting coefficients that we obtain for the moduli m = 3, 6, and 17, using four
randomly generated auxiliary objective functions,

c1 = (17, 34, 10, 49, 25, 43, 39, 33, 37, 16)>,

c2 = (28, 45, 11, 16, 17, 4, 31, 45, 32, 36)>,

c3 = ( 5, 29, 44, 10, 25, 43, 14, 39, 38, 21)>,

c4 = (37, 29, 40, 11, 46, 33, 8, 13, 31, 1)>.

The results in Table 2 show that we can obtain both trivial and non-trivial lifting
coefficients, depending on the choice of the objective function. A higher modulus
seems to lead to a higher proportion of non-trivial lifting coefficients.

To verify this observation, we consider the optimal vertices for a random sam-
pling of auxiliary objective functions in order to measure which proportion of the
possible vertices yields nontrivial lifting coefficients. To this end, we randomly
generate 40 objective functions by choosing the objective coefficients uniformly
from the set {0, 1, . . . , 50}. (We remark that if Algorithm 16 were to be applied as
a separation procedure, the auxiliary objective function should be chosen in a way
depending on the point to be cut off, rather than randomly.)

The computational results of our experiment are shown in Tables 3–6. For the
LP calculations we use CPLEX, version 6.6.

In all tables, the column “# cuts” shows the number of instances (out of 30)
where at least for one auxiliary objective function we obtain a lifting vector yield-
ing a cut-off. In the column “# inf.”, the number of instances where Q̃m is empty
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Table 2. Lifting coefficients in Example 17 for a few auxiliary objective functions and moduli

Cut coefficients
Auxiliary

objective π1 π2 π3 y4 y5 y6 y7 y8 y9 y10

m = 3

c1 1 1 1 0 0 0 0 0 0 0 trivial

c2 1 1 1 0 0 0 0 0 0 0 trivial

c3 1 1 1 0 0 0 0 0 0 0 trivial

c4 1 1 1 0 1
2 −

1
2 −1 − 1

2
1
2 −1 cut-off

m = 6

c1 1 1 1 0 0 0 0 0 0 0 trivial

c2 1 1 1 − 3
4 −

1
2 −1 1

4
1
2

1
4

1
4 cut-off

c3 1 1 1 0 0 0 0 0 0 0 trivial

c4 1 1 1 −1 1
2 −

1
2 −2 − 1

2
3
2 −2 cut-off

m = 17

c1 1 1 1 0 − 1
4

3
4

3
4 −

1
4 −

1
2 −

1
4 cut-off

c2 1 1 1 − 1
3

1
3 −

5
3

4
3

2
3 −

5
3

2
3 cut-off

c3 1 1 1 − 5
3 −

2
3

1
3

1
3 1 1

3 −
2
3 cut-off

c4 1 1 1 3 4 −2 −2 −3 −2 −3 cut-off

(i.e., the auxiliary LP is infeasible) are listed. Finally, the column “% cuts” mirrors
the percentage how often a nontrivial cut has been found (relative to the number
of nonempty Q̃m multiplied by the number of objectives), i.e., whenever a lifting
vector can be determined, we measure how often this lifting is nontrivial.

The computational results show that it is possible to obtain nontrivial lifting
coefficients using the proposed technique. For original inequalities that are valid
for the complete problem (ineq. (8) for u = 1), the algorithm only works well
for small dimensions n ≤ 15. For original inequalities that are not valid for the
complete problem (ineq. (9) for u = 1 and (8) for u = 2), Algorithm 16 computes
nontrivial lifting coefficients in the majority of the randomly generated instances,
if the modulus m is chosen large enough. We note, however, that the quality of the
lifting procedure becomes worse for larger upper bounds.
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Conclusions. We conclude that the lifting procedure works best for problems
with small upper bounds, when we try to lift inequalities for the subspace problem
that are not valid for the complete problem. For problems where the variables have
larger upper bounds, we believe that the strength of the inequalities obtained with
our lifting procedure is essentially the same as the subadditive cuts obtained from
the linear program of Gomory (1969). Thus, the overhead of our lifting procedure
(which considers auxiliary problems with an exponential number of inequalities,
rather than a quadratic number of inequalities) cannot pay off. Moreover, experi-
ments in the past have shown that group relaxations for small group orders (like
m ≤ 30 in our experiments) are very weak. Recent experiments by Fischetti and
Saturni (2005) also show that one needs group orders of at least 20 to reach the
same strength as Gomory mixed-integer cuts.

We also need to point out that the computational experiments carried out in
this paper are very limited. We believe that the computational value of our lift-
ing procedure can only be determined by extensive tests within a branch-and-cut
system. Also more interesting problem classes than knapsack problems should be
addressed. Such experiments, however, are beyond the intended scope of this pa-
per.

If one tries to use our lifting procedure in a branch-and-cut system, many rele-
vant and interesting questions will arise:

– How should one choose the inequalities to be lifted?
– Which is the choice of the modulus m that gives the best trade-off between the

strength of the inequalities and the size of the auxiliary problems and of the
required database?

– Instead of writing down and solving an auxiliary LP of exponential size, a
separation procedure should be designed.

– In a practical implementation, it may also be essential to strengthen the dis-
crete relaxation even more, for instance by taking generalized upper bound
constraints into consideration.

We believe that, if these questions are solved, our lifting procedure could be of
practical use in a branch-and-cut system, especially for 0/1 problems.
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Table 3. Lifting results for dimension n = 10

u = 1, ineq. (8) u = 1, ineq. (9) u = 2, ineq. (8)

m # cuts # inf. % cuts # cuts # inf. % cuts # cuts # inf. % cuts

2 30 0 47 7 23 100 0 30 0
3 30 0 55 9 21 100 0 30 0
4 30 0 74 17 13 100 0 30 0
5 30 0 82 14 16 100 1 29 100
6 30 0 90 16 14 95 1 29 100
7 30 0 94 21 9 99 5 25 100
8 30 0 96 19 11 99 7 23 100
9 30 0 97 22 8 97 4 26 100

10 30 0 98 24 6 97 8 22 100
11 30 0 99 28 2 98 13 17 100
12 30 0 99 20 10 99 8 22 100
13 30 0 99 26 4 99 16 14 100
14 30 0 100 25 5 99 17 13 100
15 30 0 100 21 9 100 6 24 100
16 30 0 100 26 4 99 16 14 100
17 30 0 99 26 4 100 12 18 100
18 30 0 99 27 3 99 12 18 100
19 30 0 99 30 0 97 16 14 100
20 30 0 99 29 1 99 18 12 100
21 30 0 99 27 3 98 16 14 100
22 30 0 100 30 0 99 21 9 100
23 30 0 99 28 2 99 21 9 100
24 30 0 99 23 7 99 19 11 100
25 30 0 99 29 1 99 21 9 100
26 30 0 100 29 1 100 24 6 100
27 30 0 99 30 0 99 19 11 100
28 30 0 99 28 2 100 23 7 100
29 30 0 99 28 2 99 25 5 100
30 30 0 100 26 4 99 18 12 100
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Table 4. Lifting results for dimension n = 15

u = 1, ineq. (8) u = 1, ineq. (9) u = 2, ineq. (8)

m # cuts # inf. % cuts # cuts # inf. % cuts # cuts # inf. % cuts

2 16 0 10 7 23 100 0 30 0
3 17 0 9 15 15 100 0 30 0
4 24 0 15 17 13 100 0 30 0
5 24 0 10 17 13 100 2 28 100
6 26 0 23 19 11 100 3 27 100
7 26 0 19 25 5 100 7 23 100
8 27 0 26 21 9 100 6 24 100
9 29 0 29 24 6 100 9 21 100

10 30 0 36 24 6 100 9 21 100
11 30 0 37 27 3 100 12 18 100
12 30 0 42 26 4 100 10 20 100
13 30 0 36 26 4 100 9 21 100
14 30 0 40 26 4 100 19 11 100
15 30 0 45 21 9 100 10 20 100
16 30 0 44 27 3 100 12 18 100
17 30 0 44 25 5 100 13 17 100
18 30 0 53 28 2 100 16 14 100
19 30 0 44 30 0 100 21 9 100
20 30 0 50 29 1 100 19 11 100
21 30 0 56 30 0 100 20 10 100
22 30 0 62 29 1 100 19 11 100
23 30 0 63 27 3 100 17 13 100
24 30 0 64 26 4 100 21 9 100
25 30 0 68 28 2 100 20 10 100
26 30 0 64 28 2 99 20 10 100
27 30 0 68 28 2 100 22 8 100
28 30 0 64 28 2 100 23 7 100
29 30 0 67 27 3 100 21 9 100
30 30 0 73 25 5 100 18 12 100
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Table 5. Lifting results for dimension n = 20

u = 1, ineq. (8) u = 1, ineq. (9) u = 2, ineq. (8)

m # cuts # inf. % cuts # cuts # inf. % cuts # cuts # inf. % cuts

2 5 0 6 8 22 100 0 30 0
3 3 0 < 1 12 18 100 0 30 0
4 6 0 6 21 9 100 0 30 0
5 1 0 < 1 16 14 100 2 28 100
6 9 0 6 21 9 100 2 28 100
7 5 0 < 1 21 9 100 7 23 100
8 8 0 6 24 6 100 8 22 100
9 9 0 < 1 25 5 100 4 26 100

10 7 0 6 22 8 100 9 21 100
11 9 0 1 30 0 100 12 18 100
12 13 0 6 26 4 100 10 20 100
13 7 0 1 25 5 100 10 20 100
14 10 0 6 25 5 100 17 13 100
15 10 0 3 22 8 100 5 25 100
16 11 0 7 28 2 100 15 15 100
17 7 0 2 26 4 100 11 19 100
18 11 0 7 28 2 100 14 16 100
19 6 0 < 1 28 2 100 19 11 100
20 15 0 7 26 4 100 19 11 100
21 8 0 1 26 4 100 13 17 100
22 16 0 9 30 0 100 22 8 100
23 17 0 3 26 4 100 19 11 100
24 16 0 7 28 2 100 22 8 100
25 16 0 2 27 3 100 20 10 100
26 17 0 8 28 2 100 19 11 100
27 18 0 3 30 0 100 22 8 100
28 18 0 8 28 2 100 26 4 100
29 20 0 3 25 5 100 21 9 100
30 17 0 11 25 5 100 17 13 100
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Table 6. Lifting results for dimension n = 30

u = 1, ineq. (8) u = 1, ineq. (9) u = 2, ineq. (8)

m # cuts # inf. % cuts # cuts # inf. % cuts # cuts # inf. % cuts

2 1 0 < 1 5 25 100 0 30 0
3 0 0 0 13 17 100 0 30 0
4 1 0 < 1 15 15 100 0 30 0
5 0 0 0 12 18 100 0 30 0
6 0 0 0 17 13 100 0 30 0
7 0 0 0 21 9 100 7 23 100
8 1 0 < 1 19 11 100 7 23 100
9 0 0 0 23 7 100 4 26 100

10 1 0 < 1 20 10 100 7 23 100
11 0 0 0 28 2 100 10 20 100
12 1 0 < 1 25 5 100 8 22 100
13 0 0 0 28 2 100 10 20 100
14 1 0 < 1 24 6 100 14 16 100
15 0 0 0 21 9 100 9 21 100
16 0 0 0 25 5 100 13 17 100
17 0 0 0 28 2 100 13 17 100
18 1 0 < 1 27 3 100 11 19 100
19 0 0 0 29 1 100 18 12 100
20 1 0 < 1 26 4 100 19 11 100
21 0 0 0 29 1 100 18 11 100
22 1 0 < 1 29 1 100 18 12 100
23 0 0 0 30 0 100 22 8 100
24 1 0 < 1 26 4 100 17 13 100
25 0 0 0 27 3 100 19 11 100
26 0 0 0 30 0 100 20 10 100
27 0 0 0 29 1 100 23 7 100
28 1 0 < 1 27 3 100 23 7 100
29 0 0 0 26 4 100 22 8 100
30 1 0 < 1 25 5 100 16 14 100
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