
MSRI Summer Graduate Workshop:
Algebraic, Geometric, and
Combinatorial Methods for

Optimization

Part IV

Geometry of Numbers and
Rational Generating Function

Techniques for Integer Programming

Matthias Köppe, UC Davis

September 1, 2010

Contents

1 Introduction and Preliminaries 5
1.1 Integer Optimization Problems and Their Complexity 5

1.1.1 Presentation of the problem 6
1.1.2 Encoding issues for solutions 6
1.1.3 Approximation algorithms and schemes 7
1.1.4 Incomputability . 8
1.1.5 Hardness and inapproximability 11

1.2 Introduction to generating functions 13

2 Tools from the Geometry of Numbers 17
2.1 Minkowski’s 1st theorem . 18
2.2 Packing, covering, shortest vectors . 19
2.3 Flatness for ellipsoids . 21
2.4 Approximation of convex bodies by ellipsoids 22
2.5 Flatness of convex bodies . 22
2.6 Algorithms . 22

3 Barvinok’s short rational generating functions 25
3.1 Dimension two . 26
3.2 Preparation for n dimensions: Decompositions of polyhedra and cones 32

3.2.1 Indicator functions and inclusion–exclusion 32
3.2.2 Gram–Brianchon and Brion 33
3.2.3 Avoiding inclusion–exclusion with half-open decompositions . 35

3.3 Generating functions and the algorithm of Barvinok 42
3.4 Evaluation (specialization) . 49
3.5 Boolean operations and projections 54

4 Mixed-integer polynomial optimization via the summation method 57
4.1 The summation method . 58
4.2 FPTAS for optimizing non-negative polynomials over integer points of

polytopes . 60
4.3 Extension to mixed-integer optimization via discretization 66

4.3.1 Grid approximation results . 66
4.3.2 Bounding techniques . 69

3

Contents

4.3.3 Proof . 72
4.4 Extension to polynomials of arbitrary range 74
Notes and sources . 78

5 Multicriteria mixed-integer optimization 79
5.1 Introduction . 80
5.2 The rational function encoding of all Pareto optima 85
5.3 Efficiently listing all Pareto optima 90
5.4 Selecting a Pareto optimum using polyhedral global criteria 93
5.5 Selecting a Pareto optimum using non-polyhedral global criteria . . . 95

6 Further applications 99

Bibliography 101

4

Chapter 1

Introduction and Preliminaries

1.1 Integer Optimization Problems and Their
Complexity

We study the computational complexity of nonlinear mixed-integer optimization
problems, i.e., models of the form

max/min f(x1, . . . , xn)

s.t. g1(x1, . . . , xn) ≤ 0

...

gm(x1, . . . , xn) ≤ 0

x ∈ Rn1 × Zn2 ,

(1.1)

where n1 + n2 = n and f, g1, . . . , gm : Rn → R are arbitrary nonlinear functions.
This is a very rich topic. From the very beginning, questions such as how to present

the problem to an algorithm, and, in view of possible irrational outcomes, what it
actually means to solve the problem need to be answered. Fundamental intractability
results from number theory and logic on the one hand and from continuous optimiza-
tion on the other hand come into play. The spectrum of theorems that we present
ranges from incomputability results, to hardness and inapproximability theorems,
to classes that have efficient approximation schemes, or even polynomial-time or
strongly polynomial-time algorithms.

We restrict our attention to deterministic algorithms in the usual bit complexity
(Turing) model of computation. For an excellent recent survey focusing on other
aspects of the complexity of nonlinear optimization, including the performance of
oracle-based models and combinatorial settings such as nonlinear network flows, we
refer to Hochbaum (2007). We also do not cover the recent developments by Onn et
al. (Berstein and Onn, 2008, Berstein et al., 2008a,b, De Loera and Onn, 2006a,b,
De Loera et al., 2008b, Hemmecke et al., 2009, Lee et al., 2008a,b) in the context of
discrete convex optimization, for which we refer to the monograph by Onn (2007).
Other excellent sources are de Klerk (2008) and Pardalos (1993).

5

Chapter 1 Introduction and Preliminaries

1.1.1 Presentation of the problem

We restrict ourselves to a model where the problem is presented explicitly. In most
of this survey, the functions f and gi will be polynomial functions presented in a
sparse encoding, where all coefficients are rational (or integer) and encoded in the
binary scheme. It is useful to assume that the exponents of monomials are given
in the unary encoding scheme; otherwise already in very simple cases the results of
function evaluations will have an encoding length that is exponential in the input
size.

In an alternative model, the functions are presented by oracles, such as comparison
oracles or evaluation oracles. This model permits to handle more general functions
(not just polynomials), and on the other hand it is very useful to obtain hardness
results.

1.1.2 Encoding issues for solutions

When we want to study the computational complexity of these optimization prob-
lems, we first need to discuss how to encode the input (the data of the optimization
problem) and the output (an optimal solution if it exists). In the context of linear
mixed-integer optimization, this is straightforward: Seldom are we concerned with
irrational objective functions or constraints; when we restrict the input to be rational
as is usual, then also optimal solutions will be rational.

This is no longer true even in the easiest cases of nonlinear optimization, as can be
seen on the following quadratically constrained problem in one continuous variable:

max f(x) = x4 s.t. x2 ≤ 2.

Here the unique optimal solution is irrational (x∗ =
√

2, with f(x∗) = 4), and
so it does not have a finite binary encoding. We ignore here the possibilities of
using a model of computation and complexity over the real numbers, such as the
celebrated Blum–Shub–Smale model (Blum et al., 1989). In the familiar Turing
model of computation, we need to resort to approximations.

In the example above it is clear that for every ε > 0, there exists a rational x
that is a feasible solution for the problem and satisfies |x− x∗| < ε (proximity to the
optimal solution) or |f(x)−f(x∗)| < ε (proximity to the optimal value). However, in
general we cannot expect to find approximations by feasible solutions, as the following
example shows.

max f(x) = x s.t. x3 − 2x = 0.

(Again, the optimal solution is x =
√

2, but the closest rational feasible solution is
x = 0.) Thus, in the general situation, we will have to use the following notion of
approximation:

6

1.1 Integer Optimization Problems and Their Complexity

Definition 1.1. An algorithm A is said to efficiently approximate an optimization
problem if, for every value of the input parameter ε > 0, it returns a rational vector x
(not necessarily feasible) with ‖x−x∗‖ ≤ ε, where x∗ is an optimal solution, and the
running time of A is polynomial in the input encoding of the instance and in log 1/ε.

1.1.3 Approximation algorithms and schemes

The polynomial dependence of the running time in log 1/ε, as defined above, is a very
strong requirement. For many problems, efficient approximation algorithms of this
type do not exist, unless P = NP. The following, weaker notions of approximation
are useful; here it is common to ask for the approximations to be feasible solutions,
though.

Definition 1.2. (a) An algorithm A is an ε-approximation algorithm for a maxi-
mization problem with optimal cost fmax, if for each instance of the problem of
encoding length n, A runs in polynomial time in n and returns a feasible solution
with cost fA, such that

fA ≥ (1− ε) · fmax. (1.2)

(b) A family of algorithms Aε is a polynomial time approximation scheme (PTAS)
if for every error parameter ε > 0, Aε is an ε-approximation algorithm and its
running time is polynomial in the size of the instance for every fixed ε.

(c) A family {Aε}ε of ε-approximation algorithms is a fully polynomial time approxi-
mation scheme (FPTAS) if the running time of Aε is polynomial in the encoding
size of the instance and 1/ε.

These notions of approximation are the usual ones in the domain of combinatorial
optimization. It is clear that they are only useful when the function f (or at least
the maximal value fmax) are non-negative. For polynomial or general nonlinear op-
timization problems, various authors (Bellare and Rogaway, 1993, de Klerk et al.,
2006, Vavasis, 1993) have proposed to use a different notion of approximation, where
we compare the approximation error to the range of the objective function on the
feasible region, ∣∣fA − fmax

∣∣ ≤ ε
∣∣fmax − fmin

∣∣. (1.3)

(Here fmin denotes the minimal value of the function on the feasible region.) It
enables us to study objective functions that are not restricted to be non-negative
on the feasible region. In addition, this notion of approximation is invariant under
shifting of the objective function by a constant, and under exchanging minimization
and maximization. On the other hand, it is not useful for optimization problems that
have an infinite range. We remark that, when the objective function can take negative
values on the feasible region, (4.4) is weaker than (4.3). We will call approximation
algorithms and schemes with respect to this notion of approximation weak. This

7

Chapter 1 Introduction and Preliminaries

terminology, however, is not consistent in the literature; de Klerk (2008), for instance,
uses the notion (4.4) without an additional attribute and instead reserves the word
weak for approximation algorithms and schemes that give a guarantee on the absolute
error: ∣∣fA − fmax

∣∣ ≤ ε. (1.4)

1.1.4 Incomputability

Before we can even discuss the computational complexity of nonlinear mixed-integer
optimization, we need to be aware of fundamental incomputability results that pre-
clude the existence of any algorithm to solve general integer polynomial optimization
problems.

Hilbert’s tenth problem asked for an algorithm to decide whether a given multi-
variate polynomial p(x1, . . . , xn) has an integer root, i.e., whether the Diophantine
equation

p(x1, . . . , xn) = 0, x1, . . . , xn ∈ Z (1.5)

is solvable. It was answered in the negative by Matiyasevich (1970), based on earlier
work by Davis, Putnam, and Robinson; see also Matiyasevich (1993). A short self-
contained proof, using register machines, is presented in Jones and Matiyasevich
(1991).

Theorem 1.3. (i) There does not exist an algorithm that, given polynomials p1, . . . , pm,
decides whether the system pi(x1, . . . , xn) = 0, i = 1, . . . ,m, has a solution over
the integers.

(ii) There does not exist an algorithm that, given a polynomial p, decides whether
p(x1, . . . , xn) = 0 has a solution over the integers.

(iii) There does not exist an algorithm that, given a polynomial p, decides whether
p(x1, . . . , xn) = 0 has a solution over the non-negative integers Z+ = {0, 1, 2, . . . }.

(iv) There does not exist an algorithm that, given a polynomial p, decides whether
p(x1, . . . , xn) = 0 has a solution over the natural numbers N = {1, 2, . . . }.

These three variants of the statement are easily seen to be equivalent. The solv-
ability of the system pi(x1, . . . , xn) = 0, i = 1, . . . ,m, is equivalent to the solv-
ability of

∑m
i=1 p

2
i (x1, . . . , xn) = 0. Also, if (x1, . . . , xn) ∈ Zn is a solution of

p(x1, . . . , xn) = 0 over the integers, then by splitting variables into their positive
and negative parts, yi = max{0, xi} and zi = max{0,−xi}, clearly (y1, z1; . . . ; yn, zn)
is a non-negative integer solution of the polynomial equation q(y1, z1; . . . ; yn, zn) :=
p(y1 − z1, . . . , yn − zn) = 0. (A construction with only one extra variable is also
possible: Use the non-negative variables w = max{|xi| : xi < 0} and yi := xi + w.)

8

1.1 Integer Optimization Problems and Their Complexity

In the other direction, using Lagrange’s four-square theorem, any non-negative inte-
ger x can be represented as the sum a2 + b2 + c2 + d2 with integers a, b, c, d. Thus,
if (x1, . . . , xn) ∈ Zn

+ is a solution over the non-negative integers, then there exists a
solution (a1, b1, c1, d1; . . . ; an, bn, cn, dn) of the polynomial equation

r(a1, b1, c1, d1; . . . ; an, bn, cn, dn) := p(a2
1 + b2

1 + c2
1 + d2

1, . . . , a
2
n + b2

n + c2
n + d2

n).

The equivalence of the statement with non-negative integers and the one with the
natural numbers follows from a simple change of variables.

Sharper statements of the above incomputability result can be found in Jones
(1982). All incomputability statements appeal to the classic result by (Turing, 1936)
on the existence of recursively enumerable (or listable) sets of natural numbers that
are not recursive, such as the halting problem of universal Turing machines.

Theorem 1.4. For the following universal pairs (ν, δ)

(58, 4), . . . , (38, 8), . . . , (21, 96), . . . , (14, 2.0× 105), . . . , (9, 1.638× 1045),

there exists a universal polynomial U(x; z, u, y; a1, . . . , aν) of degree δ in 4 + ν vari-
ables, i.e., for every recursively enumerable (listable) set X there exist natural num-
bers z, u, y, such that

x ∈ X ⇐⇒ ∃a1, . . . , aν ∈ N : U(x; z, u, y; a1, . . . , aν) = 0.

Jones explicitly constructs these universal polynomials, using and extending tech-
niques by Matiyasevich. Jones also constructs an explicit system of quadratic equa-
tions in 4 + 58 variables that is universal in the same sense. The reduction of the
degree, down to 2, works at the expense of introducing additional variables; this
technique goes back to Skolem (1938).

In the following, we highlight some of the consequences of these results. Let U
be a universal polynomial corresponding to a universal pair (ν, δ), and let X be
a recursively enumerable set that is not recursive, i.e., there does not exist any
algorithm (Turing machine) to decide whether a given x is in X. By the above
theorem, there exist natural numbers z, u, y such that x ∈ X holds if and only if the
polynomial equation U(x; z, u, y; a1, . . . , aν) = 0 has a solution in natural numbers
a1, . . . , aν (note that x and z, u, y are fixed parameters here). This implies:

Theorem 1.5. (i) Let (ν, δ) be any of the universal pairs listed above. Then there
does not exist any algorithm that, given a polynomial p of degree at most δ in ν
variables, decides whether p(x1, . . . , xn) = 0 has a solution over the non-negative
integers.

(ii) In particular, there does not exist any algorithm that, given a polynomial p in
at most 9 variables, decides whether p(x1, . . . , xn) = 0 has a solution over the
non-negative integers.

9

Chapter 1 Introduction and Preliminaries

(iii) There also does not exist any algorithm that, given a polynomial p in at most 36
variables, decides whether p(x1, . . . , xn) = 0 has a solution over the integers.

(iv) There does not exist any algorithm that, given a polynomial p of degree at
most 4, decides whether p(x1, . . . , xn) = 0 has a solution over the non-negative
integers (or over the integers).

(v) There does not exist any algorithm that, given a system of quadratic equations
in at most 58 variables, decides whether it has a solution of the non-negative
integers.

(vi) There does not exist any algorithm that, given a system of quadratic equations
in at most 232 variables, decides whether it has a solution of the integers.

We remark that the bounds of 4 × 9 = 36 and 4 × 58 = 232 are most probably
not sharp; they are obtained by a straightforward application of the reduction using
Lagrange’s theorem.

For integer polynomial optimization, this has the following fundamental conse-
quences. First of all, Theorem 1.5 can be understood as a statement on the feasibility
problem of an integer polynomial optimization problem. Thus, the feasibility of an
integer polynomial optimization problem with a single polynomial constraint in 9
non-negative integer variables or 36 free integer variables is undecidable, etc.

If we wish to restrict our attention to feasible optimization problems, we can con-
sider the problem of minimizing p2(x1, . . . , xn) over the integers or non-negative in-
tegers and conclude that unconstrained polynomial optimization in 9 non-negative
integer or 36 free integer variables is undecidable. We can also follow Jeroslow (1973)
and associate with an arbitrary polynomial p in n variables the optimization problem

min u

s.t. (1− u) · p(x1, . . . , xn) = 0,

u ∈ Z+, x ∈ Zn
+.

This optimization problem is always feasible and has the optimal solution value 0 if
and only if p(x1, . . . , xn) = 0 is solvable, and 1 otherwise. Thus, optimizing linear
forms over one polynomial constraint in 10 non-negative integer variables is incom-
putable, and similar statements can be derived from the other universal pairs above.
Jeroslow (1973) used the above program and a degree reduction (by introducing
additional variables) to prove the following.

Theorem 1.6. The problem of minimizing a linear form over quadratic inequality
constraints in integer variables is not computable; this still holds true for the subclass
of problems that are feasible, and where the minimum value is either 0 or 1.

This statement can be strengthened by giving a bound on the number of integer
variables.

10

1.1 Integer Optimization Problems and Their Complexity

1.1.5 Hardness and inapproximability

All incomputability results, of course, no longer apply when finite bounds for all vari-
ables are known; in this case, a trivial enumeration approach gives a finite algorithm.
This is immediately the case when finite bounds for all variables are given in the
problem formulation, such as for 0-1 integer problems.

For other problem classes, even though finite bounds are not given, it is possible
to compute such bounds that either hold for all feasible solutions or for an optimal
solution (if it exists). This is well-known for the case of linear constraints, where
the usual encoding length estimates of basic solutions (Grötschel et al., 1988) are
available. Such finite bounds can also be computed for convex and quasi-convex
integer optimization problems.

In other cases, algorithms to decide feasibility exist even though no finite bounds
for the variables are known. An example is the case of single Diophantine equations
of degree 2, which are decidable using an algorithm by Siegel (1972). We discuss the
complexity of this case below.

Within any such computable subclass, we can ask the question of the complexity.
Below we discuss hardness results that come from the number theoretic side of the
problem (section 1.1.5) and those that come from the continuous optimization side
(section 1.1.5.

Hardness results from quadratic Diophantine equations in fixed dimension

The computational complexity of single quadratic Diophantine equations in 2 vari-
ables is already very interesting and rich in structure; we refer to to the excellent
paper by Lagarias (2006). Below we discuss some of these aspects and their implica-
tions on optimization.

Testing primality of a number N is equivalent to deciding feasibility of the equation

(x+ 2)(y + 2) = N (1.6)

over the non-negative integers. Recently, Agrawal et al. (2004) showed that primality
can be tested in polynomial time. However, the complexity status of finding factors
of a composite number, i.e., finding a solution (x, y) of (1.6), is still unclear.

The class also contains subclasses of NP-complete feasibility problems, such as
the problem of deciding for given α, β, γ ∈ N whether there exist x1, x2 ∈ Z+ with
αx2

1 + βx2 = γ (Manders and Adleman, 1978). On the other hand, the problem of
deciding for given a, c ∈ N whether there exist x1, x2 ∈ Z with ax1x2 + x2 = c, lies
in NP \ coNP unless NP = coNP (Adleman and Manders, 1977).

The feasibility problem of the general class of quadratic Diophantine equations
in two (non-negative) variables was shown by Lagarias (2006) to be in NP. This
is not straightforward because minimal solutions can have an encoding size that is

11

Chapter 1 Introduction and Preliminaries

exponential in the input size. This can be seen in the case of the so-called anti-
Pellian equation x2 − dy2 = −1. Here Lagarias (1980) proved that for all d = 52n+1,
there exists a solution, and the solution with minimal binary encoding length has an
encoding length of Ω(5n) (while the input is of encoding length Θ(n)). (We remark
that the special case of the anti-Pellian equation is in coNP, as well.)

Related hardness results include the problem of quadratic congruences with a
bound, i.e., deciding for given a, b, c ∈ N whether there exists a positive integer
x < c with x2 ≡ a (mod b); this is the NP-complete problem AN1 in Garey and
Johnson (1979).

From these results, we immediately get the following consequences on optimization.

Theorem 1.7. (i) The feasibility problem of quadratically constrained problems in
n = 2 integer variables is NP-complete.

(ii) The problems of computing a feasible (or optimal) solution of quadratically con-
strained problems in n = 2 integer variables is not polynomial-time solvable
(because the output may require exponential space).

(iii) The feasibility problem of quadratically constrained problems in n > 2 integer
variables is NP-hard (but it is unknown whether it is in NP).

(iv) The problem of minimizing a degree-4 polynomial over the lattice points of a
convex polygon (dimension n = 2) is NP-hard.

(v) The problem of finding the minimal value of a degree-4 polynomial over Z2
+ is

NP-hard; writing down an optimal solution cannot be done in polynomial time.

However, the complexity of minimizing a quadratic form over the integer points
in polyhedra of fixed dimension is unclear, even in dimension n = 2. Consider the
integer convex minimization problem

min αx2
1 + βx2,

s.t. x1, x2 ∈ Z+

for α, β ∈ N. Here an optimal solution can be obtained efficiently, as we explain in
section ??; in fact, clearly x1 = x2 = 0 is the unique optimal solution. On the other
hand, the problem whether there exists a point (x1, x2) of a prescribed objective
value γ = αx2

1 + βx2 is NP-complete (see above). For indefinite quadratic forms,
even in dimension 2, nothing seems to be known.

In varying dimension, the convex quadratic maximization case, i.e., maximizing
positive definite quadratic forms is an NP-hard problem. This is even true in very
restricted settings such as the problem to maximize

∑
i (w

>
i x)2 over x ∈ {0, 1}n

(Onn, 2007).

12

1.2 Introduction to generating functions

0 1 2 3 4

Figure 1.1: A one-dimensional lattice-point set

Inapproximability of nonlinear optimization in varying dimension

Even in the pure continuous case, nonlinear optimization is known to be hard. Bellare
and Rogaway (1995, 1993) proved the following inapproximability results using the
theory of interactive proof systems.

Theorem 1.8. Assume that P 6= NP.

(i) For any ε < 1
3
, there does not exist a polynomial-time weak ε-approximation al-

gorithm for the problem of (continuous) quadratic programming over polytopes.

(ii) There exists a constant δ > 0 such that the problem of polynomial programming
over polytopes does not have a polynomial-time weak (1 − n−δ)-approximation
algorithm.

Here the number 1− n−δ becomes arbitrarily close to 0 for growing n; note that a
weak 0-approximation algorithm is one that gives no guarantee other than returning
a feasible solution.

Inapproximability still holds for the special case of minimizing a quadratic form
over the cube [−1, 1]n or over the standard simplex. In the case of the cube, inap-
proximability of the max-cut problem is used. In the case of the standard simplex,
it follows via the celebrated Motzkin–Straus theorem (Motzkin and Straus, 1965)
from the inapproximability of the maximum stable set problem. These are results by
H̊astad (1997); see also de Klerk (2008).

1.2 Introduction to generating functions

The main topic of this course is the use of generating functions to solve linear
and nonlinear optimization over the (mixed) integer points in a polytope, i.e., over
linear constraints.

We begin with a simple example to introduce generating functions. Let us consider
the set S of integers in the interval P = [0, . . . , n]; see Figure 1.1. We shall associate
with the set S the polynomial

g(S; z) = z0 + z1 + · · ·+ zn−1 + zn; (1.7)

i.e., every integer α ∈ S corresponds to a monomial zα with coefficient 1 in the
polynomial g(S; z). This polynomial is called the generating function of S (or of P).

13

Chapter 1 Introduction and Preliminaries

From the viewpoint of computational complexity, this generating function is of expo-
nential size (in the encoding length of n), just as an explicit list of all the integers 0,
1, . . . , n − 1, n would be. However, we can observe that (1.7) is a finite geometric
series, so there exists a simple summation formula that expresses (1.7) in a much
more compact way:

g(S; z) = z0 + z1 + · · ·+ zn−1 + zn =
1− zn+1

1− z
. (1.8)

The “long” polynomial has a “short” representation as a rational function. The
encoding length of this new formula is linear in the encoding length of n.

Suppose now someone presents to us a finite set S of integers as a generating
function g(S; z). Can we decide whether the set is nonempty? In fact, we can do
something much stronger even – we can count the integers in the set S, simply by
evaluating at g(S; z) at z = 1. On our example we have

|S| = g(S; 1) = 10 + 11 + · · ·+ 1n−1 + 1n = n+ 1.

We can do the same on the shorter, rational-function formula. We need to be a bit
careful, though: The point z = 1 is a singularity of the formula, but it is removable
(in fact, we know that g(S; z) is a polynomial, so it has no poles). We just compute
the limit

|S| = lim
z→1

g(S; z) = lim
z→1

1− zn+1

1− z
= lim

z→1

−(n+ 1)zn

−1
= n+ 1

using the Bernoulli–l’Hôpital rule. Note that we have avoided to carry out a polyno-
mial division, which would have given us the long polynomial again.

Can these simple observations be generalized and exploited to obtain an algorith-
mically efficient representation of lattice-point sets in arbitrary polyhedra? It turns
out they can – Barvinok (1994b) pioneered a theory of “short” rational generating
functions, which gives an efficient calculus for lattice-point sets in polyhedra for every
fixed dimension. Before presenting the general theory, though, we continue with our
1-dimensional example (and later with a 2-dimensional example) to investigate some
of the features of the approach.

Rational functions and their Laurent expansions. We note that the summation
formula (1.8) can also be written in a slightly different way:

g(S; z) =
1

1− z
− zn+1

1− z
=

1

1− z
+

zn

1− z−1
(1.9)

14

1.2 Introduction to generating functions

0 1 2 3 4

=

+

Figure 1.2: One-dimensional Brion theorem

=z

<z1

|z| < 1

|z| > 1

Figure 1.3: The domains of convergence of the Laurent series

Each of the two summands on the right-hand side can be viewed as the summation
formula of an infinite geometric series:

g1(z) =
1

1− z
= z0 + z1 + z2 + . . . , (1.10a)

g2(z) =
zn

1− z−1
= zn + zn−1 + zn−2 + (1.10b)

The two summands have a geometrical interpretation. If we view each geometric
series as the generating function of an (infinite) lattice point set, we arrive at the
picture shown in Figure 1.2. Something in this calculation seems wrong – all integer
points in the interval [0, n] are covered twice, and also all integer points outside the
interval are covered once. Where is the mistake?

We have observed a phenomenon that is due to the one-to-many correspondence
of rational functions to their Laurent series. When we consider Laurent series of the
function g1(z) about z = 0, the pole z = 1 splits the complex plane into two domains

15

Chapter 1 Introduction and Preliminaries

0 1 2 3 4

=

−

Figure 1.4: Another one-dimensional identity

of convergence (Figure 1.3): For |z| < 1, the power series

z0 + z1 + z2 + . . . (1.11)

converges to g1(z). As a matter of fact, it converges absolutely and uniformly on
every compact subset of the open circle { z ∈ C : |z| < 1 }. For |z| > 1, however, the
series (1.11) diverges. On the other hand, the Laurent series

− z−1 − z−2 − z−3 − . . . (1.12)

converges (absolutely and compact-uniformly) on the open circular ring { z ∈ C :
|z| > 1 } to the function g1(z), whereas it diverges for |z| < 1. The same holds for
the second summand g2(z). Altogether we have:

g1(z) =

{
z0 + z1 + z2 + . . . for |z| < 1

−z−1 − z−2 − z−3 − . . . for |z| > 1
(1.13)

g2(z) =

{
−zn+1 − zn+2 − zn+3 − . . . for |z| < 1

zn + zn−1 + zn−2 + . . . for |z| > 1
(1.14)

We can now see that the “mistake” we observed in formula (1.10) and Figure 1.2 is
due to the fact that we had picked two Laurent series for the summands g1(z) and
g2(z) that do not have a common domain of convergence. If for each summand we
choose the series that converge for |z| < 1, we obtain the more intuitive formula

g(S; z) =
(
z0 + z1 + z2 + . . .

)
−
(
zn+1 + zn+2 + zn+3 + . . .

)
; (1.15)

see also Figure 1.4. Nevertheless, it turns out that using Laurent series with dis-
joint domains of convergence is a powerful technique; we will meet the situation of
formula (1.10) and Figure 1.2 again in the multidimensional case as Brion’s Theorem.

16

Chapter 2

Tools from the Geometry of Numbers

w

17

Chapter 2 Tools from the Geometry of Numbers

We mostly follow Barvinok, “Course in Convexity”.

Definition 2.1. A lattice Λ of Rn is a discrete additive subgroup of Rn whose linear
span is Rn.

Equivalently, a lattice is a set of the form BZn with B a regular n×n matrix. The
columns of B form a basis of the lattice. Bases are not unique; multiplication from
the right by a unimodular matrix gives another basis (these are all bases).

Definition 2.2. Dual (polar, reciprocal) lattice

Λ∗ = {x ∈ Rd : 〈x,y〉 ∈ Z for all y ∈ Λ }

.

2.1 Minkowski’s 1st theorem

Theorem 2.3 (Blichfeldt). Let Λ ⊂ Rd lattice, X measurable, volX > det Λ. Then
there exist x 6= y in X with x− y ∈ Λ.

Proof. Let Λ = BZd, denote (half-open) fundamental parallelepiped Π = B[0, 1).
From tiling by copies of fundamental parallelepipeds,

Rd =
∐
u∈Λ

(Π + u),

get

X =
∐
u∈Λ

[(Π + u) ∩X]

=
∐
u∈Λ

[(Π + u) ∩X − u︸ ︷︷ ︸
=:Xu

+u]

(so Xu = Π∩ (X −u) is the set of all points in Π that, translated by u, fall into X.)
Volume argument: ∑

u

volXu = volX > vol Π = det Λ

but each Xu ⊂ Π, so the Xu cannot be pairwise disjoint.
Take an intersecting pair: Xu ∩Xv 6= ∅, let a ∈ Xu ∩Xv.
Then: a ∈ Xu implies x := a + u ∈ X
and: a ∈ Xv implies y := a + v ∈ X
so x− y = u− v ∈ Λ.

18

2.2 Packing, covering, shortest vectors

Theorem 2.4 (Minkowski’s 1st convex body theorem). Let Λ ⊂ Rd lattice, A ⊆ Rd

convex, symmetric, and either

• volA > 2d det Λ or

• volA ≥ 2d det Λ and A compact,

Then there exist 0 6= u ∈ A ∩ Λ.

Proof. (Case of a strict inequality.) Let X = 1
2
A, so volX > det Λ.

By Blichfeldt, there exist x 6= y in X with x− y ∈ Λ.
So 2x, 2y ∈ A,
by symmetry −2y ∈ A,
by convexity 0 6= u = 1

2
(2x− 2y) = x− y ∈ A.

(Compact case.) Use ρA for ρ > 1, get from theorem sequence {uρ}ρ ⊂ A,
compactness argument: limit point u, discreteness: 0 6= u ∈ A ∩ Λ.

Note: Without symmetry, volumes of lattice-point-free bodies can be arbitrarily
large. But we get “flatness” (later); some preparations first.

2.2 Packing, covering, shortest vectors

Definition 2.5. The packing radius of Λ:

ρ(Λ) = sup
{
ρ : B(x, ρ) ∩B(y, ρ) = ∅ for x 6= y in Λ

}
Note: The packing radius is 1

2
of the length of a shortest nonzero lattice vector (in

`2).
Minkowski’s 1st gives nice bounds for shortest nonzero lattice vectors:

Lemma 2.6. Shortest vector in `∞:

‖x∗∞‖∞ ≤ (det Λ)1/d.

Proof. Take the cube � = {x : ‖x‖∞ ≤ (det Λ)1/d}. It has volume 2d det Λ. By
Minkowski’s 1st, there exists 0 6= u ∈ � ∩ Λ.

Lemma 2.7. Packing radius (1
2

shortest vector in `2):

ρ(Λ) ≤ 1

2

√
d (det Λ)1/d.

Proof. Let x∗ shortest vector (`2), x∗∞ any shortest vector (`∞). Then

‖x∗‖ ≤ ‖x∗∞‖ ≤
√
d ‖x∗∞‖∞ ≤

√
d (det Λ)1/d.

19

Chapter 2 Tools from the Geometry of Numbers

Sharper estimates using the volume of the d-dimensional ball:

σd =
πd/2

Γ(d
2

+ 1)
,

which gives

ρ(Λ) ≤
√

d

2πe

(
1 +O(1

d
)
)
(det Λ)1/d.

From above lemma we get a nice relation for the packing radii of a lattice and its
dual.

Lemma 2.8.

ρ(Λ) · ρ(Λ∗) ≤ d

4
.

Proof. By lemma,

ρ(Λ) ≤ 1

2

√
d (det Λ)1/d

ρ(Λ∗) ≤ 1

2

√
d (det Λ∗)1/d

and det Λ · det Λ∗ = 1.

“Dual” to packing is covering.

Definition 2.9. The covering radius of Λ is

µ(Λ) = inf
{
µ > 0 : Λ + B̄(0, µ) = Rd }.

We get an important relation between the covering radius of a lattice and the
packing radius of its dual.

Theorem 2.10.

1

4
≤ µ(Λ) · ρ(Λ∗) ≤ 1

4

√√√√ d∑
k=1

k2 ≤ 1

4
d3/2.

It is important that the bound only depends on the dimension. It can be reduced
to O(d) with a different proof technique. The above bound is the best one that can
be proved by elementary means.

Proof. We only prove (and use) the upper bound. The proof is by induction. For
d = 1, have Λ = αZ (some α) and Λ∗ = α−1Z, so covering radius µ(Λ) = α/2 and
packing radius ρ(Λ∗), so µ · λ = 1/4.

20

2.3 Flatness for ellipsoids

For d > 1, let u shortest of Λ, so 1
2
‖u‖ = ρ(Λ). By orthogonal change of coordi-

nates, can assume u = 2ρ · ed. We use the canonical projection πd−1 : Rd → Rd−1 ↪→
Rd onto the first d− 1 coordinates. Λd−1 := πd−1(Λ) is a lattice of Rd−1.

We first prove ρ(Λ∗d−1) ≥ ρ(Λ∗). Let a∗ ∈ Λ∗d−1 and a ∈ Λ; then πd−1(a) ∈ Λd−1, so

Z 3 〈a∗, πd−1(a)〉 = 〈a∗, a〉,

so a∗ ∈ Λ∗. So we have the inclusion Λ∗d−1 ⊆ Λ∗.
Next let x ∈ Rd and y = πd−1(x). Let v closest to y in Λd−1, so (covering)

‖v − y‖ ≤ µ(Λd−1)

Since v is a point of the projected lattice Λd−1, there is a lattice vector w0 ∈ Λ that
is a preimage. All points in w0 + uZ lie in Λ. Let w be a point that is closest to x;
then

|wd − xd| ≤
1

2
‖u‖ = ρ(Λ).

Thus
‖w − x‖2 ≤ µ2(Λd−1) + ρ2(Λ).

This proves µ2(Λ) ≤ µ2(Λd−1) + ρ2(Λ).
Now we use the induction:

µ2(Λ) · ρ2(Λ∗) ≤ µ2(Λd−1) ρ2(Λ∗)︸ ︷︷ ︸
≤ρ2(Λ∗d−1)

+ ρ2(Λ)ρ2(Λ∗)︸ ︷︷ ︸
≤ 1

16
d2 (Lemma)

≤ 1

16

(d−1∑
k=1

k2

)
+

1

16
d2,

which completes the proof.

2.3 Flatness for ellipsoids

We first prove the flatness theorem for balls.

Theorem 2.11. Let Λ ⊂ Rd lattice, B = B̄(a, β) a ball, B ∩ Λ = ∅.
Then there exists v ∈ Λ∗ with

widthv(B) := max{ 〈v,x〉 : x ∈ B } −min{ 〈v,x〉 : x ∈ B } ≤ d3/2.

Proof. For any v, we have

widthv(B) = (〈v, a〉+ β‖v‖)− (〈v, a〉 − β‖v‖) = 2β · ‖v‖.

Since B ∩ Λ = ∅, certainly β ≤ µ(Λ) (covering).
We pick v to be shortest in Λ∗, so ‖v‖ = 2ρ(Λ∗).
From the previous theorem, µ(Λ) · ρ(Λ∗) ≤ d3/2/4.
This gives widthv(B) ≤ 4µ(Λ) · ρ(Λ∗) ≤ d3/2 as desired.

21

Chapter 2 Tools from the Geometry of Numbers

Next, for ellipsoids.

Theorem 2.12. Let Λ ⊂ Rd lattice, E ellipsoid, E ∩ Λ = ∅. Then there exists
v ∈ Λ∗ with

widthv(E) ≤ d3/2.

Proof. The ellipsoid E is a regular linear image of a ball, E = TB. Instead of E, Λ,
and Λ∗ we consider the ball B = T−1E, the lattice T−1Λ, and its dual (T−1Λ)∗ =
T>Λ∗, for which the statement already holds by the above theorem.

Now for any v ∈ Λ∗ and x ∈ E (thus x = Ty for some y ∈ B) we have

〈v,x〉 = 〈v, Ty〉 = 〈T>v,y〉,

where T>v ∈ (T−1Λ)∗. Thus the estimate carries over.

2.4 Approximation of convex bodies by ellipsoids

Theorem 2.13. Let K ⊆ Rd be a convex body. There exists a unique ellipsoid E
(“Löwner–John ellipsoid”) of maximum volume contained in K. The concentric d-
dilation of E contains K.

Algorithmically, approximations by ellipsoids can be obtained by various means,
including the shallow-cut ellipsoid method.

2.5 Flatness of convex bodies

The approximation of arbitrary convex bodies by ellipsoids then implies:

Theorem 2.14. Let Λ ⊂ Rd lattice, K a convex body, K ∩Λ = ∅. Then there exists
v ∈ Λ∗ with

widthv(K) ≤ d5/2.

The estimate can be reduced to O(d3/2).

2.6 Algorithms

The Lenstra–Lenstra–Lovász (LLL) algorithm computes in polynomial time an “al-
most orthogonal” lattice basis. All known efficient deterministic shortest vector al-
gorithms first compute an LLL basis. In addition, probabilistic algorithms based on
sieving are known.

Computing a flatness direction of a convex body can be achieved by first computing
an ellipsoidal approximation, and then using a shortest vector computation to find a
flatness direction of the ellipsoid.

22

2.6 Algorithms

Lenstra’s algorithm (Lenstra, 1983) was the first algorithm to establish the fact
that integer linear optimization problems in fixed dimension can be solved in polyno-
mial time. A modern description of Lenstra-type algorithms can be found in Eisen-
brand (2010); see also Hildebrand and Köppe (2010). In a nutshell, the algorithm
computes flatness directions and performs branching on hyperplanes orthogonal to
the flatness direction. Because the flatness constant only depends on the dimension,
this creates only constantly many branches, as opposed to potentially exponentially
many branches that could appear in single-variable branching. Then this is applied
recursively. In constant dimension, only a fixed number of subproblems is created.

23

Chapter 2 Tools from the Geometry of Numbers

24

Chapter 3

Barvinok’s short rational generating
functions

v̂

v

25

Chapter 3 Barvinok’s short rational generating functions

b2

b1

Figure 3.1: Tiling a rational two-dimensional cone with copies of the fundamental
parallelepiped

3.1 Dimension two

Let us consider a cone C spanned by the vectors b1 = (α,−1) and b2 = (β, 1); see
Figure 3.1 for an example with α = 2 and β = 4. We would like to write down
a generating function for the integer points in this cone. We apparently need a
generalization of the geometric series, of which we made use in the one-dimensional
case. The key observation now is that using copies of the half-open fundamental
parallelepiped,

Π =
{
λ1b1 + λ2b2 : λ1 ∈ [0, 1), λ2 ∈ [0, 1)

}
, (3.1)

the cone can be tiled :

C =
⋃
s∈S

(s + Π) where S = {µ1b1 + µ2b2 : (µ1, µ2) ∈ Z2
+ } (3.2)

(a disjoint union). Moreover, because we have chosen integral generators b1,b2

for our cone, the integer points are “the same” in each copy of the fundamental
parallelepiped. Therefore, also the integer points of C can be tiled by copies of the
integer points of Π:

C ∩ Z2 =
⋃
s∈S

(
s + (Π ∩ Z2)

)
(3.3)

26

3.1 Dimension two

e1

e2

0

Figure 3.2: The semigroup S ⊆ Z2 generated by b1 and b2 is a linear image of Z2
+

We can also see C ∩Z2 as a finite disjoint union of copies of the set S, shifted by the
integer points of the fundamental parallelepiped:

C ∩ Z2 =
⋃

x∈Π∩Z2

(x + S). (3.4)

The benefit of this representation is that the set S is just the image of Z2
+ under the

matrix (b1,b2) ∈ Z2×2; cf. Figure 3.1 and Figure 3.2. Now Z2
+ is the direct product

of Z+ with itself, whose generating function we already know – it is given by the
geometric series,

g(Z+; z) = z0 + z1 + z2 + z3 + · · · = 1

1− z
.

We thus obtain the generating function as a product,

g(Z2
+; z1, z2) = (z0

1 + z1
1 + z2

1 + z3
1 + . . .)(z0

2 + z1
2 + z2

2 + z3
2 + . . .) =

1

1− z1

· 1

1− z2

.

Applying the linear transformation (b1,b2) =
(
α β
−1 1

)
, we obtain the generating func-

tion

g(S; z1, z2) =
1

(1− zα1 z−1
2)(1− zβ1 z1

2)
.

From the representation (3.4) it is now clear that

g(C; z1, z2) =
∑

x∈Π∩Z2

zx1
1 z

x2
2 g(S; z1, z2);

27

Chapter 3 Barvinok’s short rational generating functions

the multiplication with the monomial zx1
1 z

x2
2 corresponds to the shifting of the set S

by the vector (x1, x2). In our example, it is easy to see that

Π ∩ Z2 = { (i, 0) : i = 0, . . . , α + β − 1 }.

We thus obtain the generating function

g(C; z1, z2) =
z0

1 + z1
1 + · · ·+ zα+β−2

1 + zα+β−1
1

(1− zα1 z−1
2)(1− zβ1 z1

2)
.

Unfortunately, this formula has an exponential size as the numerator contains α+ β
summands. In our example, the numerator again is a finite geometric series, so we
could use a short summation formula. However, this technique does not seem to
be helpful in general because the structure of the integer points in the fundamental
parallelepiped is usually more complicated than in our example.

Triangulations. A different idea to make the formula shorter is to break the cone
into “smaller” cones, each of which have a shorter formula. We have observed that
the length of the formula is essentially determined by the number of summands in
the numerator – which correspond to the integer points in the fundamental paral-
lelepiped. Thus the right measure of size of a cone seems to be the number of integer
points in the fundamental parallelepiped; this is called the index of the cone.

We show on our example that triangulations can be used to reduce the index of
cones. Indeed, by using an interior vector w = (1, 0), we can triangulate the cone
into the cones C1 = cone{b1,w} and C2 = cone{w,b2}. For each of the cones, the
fundamental parallelepiped contains a single integer point – the origin; see Figure 3.4.
(Such cones are called unimodular cones.) Thus we can write down their generating
functions,

g(C1; z1, z2) =
1

(1− zα1 z−1
2)(1− z1)

g(C2; z1, z2) =
1

(1− zβ1 z1
2)(1− z1)

.

Note however that if we just added these two functions, all the integer points in the
intersection C1 ∩ C2 would be counted twice. However, the intersection C1 ∩ C2 is
just a one-dimensional cone, whose generating function we can easily write as

g(C1 ∩ C2; z1, z2) =
1

1− z1

.

Thus we can fix the overcounting using the inclusion–exclusion principle, writing

g(C; z1, z2) = g(C1; z1, z2) + g(C2; z1, z2)− g(C1 ∩ C2; z1, z2)

=
1

(1− zα1 z−1
2)(1− z1)

+
1

(1− zβ1 z1
2)(1− z1)

− 1

1− z1

.
(3.5)

28

3.1 Dimension two

b2

b1

w

Figure 3.3: A two-dimensional cone of index 6 with its fundamental parallelepiped.
Using the interior vector w, a triangulation can be constructed.

⊕

⊕

	

b2

b1

w

Figure 3.4: A two-dimensional cone of index 6, triangulated into two unimodular
cones. The integer points in the one-dimensional intersection would be
counted twice, so we subtract them once (inclusion–exclusion principle).

29

Chapter 3 Barvinok’s short rational generating functions

5

b1

w

b2

b1

w

b2

⊕

	

⊕

2

3

Figure 3.5: A triangulation of the cone of index 5 generated by b1 and b2 into the two
cones spanned by {b1,w} and {b2,w}, having an index of 2 and 3, re-
spectively. We have the inclusion-exclusion formula g(cone{b1,b2}; z) =
g(cone{b1,w}; z) + g(cone{b2,w}; z) − g(cone{w}; z); here the one-
dimensional cone spanned by w needed to be subtracted.

We have thus obtained a short formula.
The bad news, however, is that triangulations don’t always work. Let us consider

another two-dimensional example, a cone C ′ generated by b1 = (1, 0) and b2 = (1, α).
An example for α = 5 is shown in Figure 3.5. The integer points in the fundamental
parallelepiped are

Π′ ∩ Z2 = {(0, 0)} ∪ { (1, i) : i = 1, . . . , α− 1 },

so again the rational generating function would have α summands in the numerator,
and thus have exponential size. Unfortunately, every attempt to use triangulations to
reduce the size of the formula fails in this example. The choice of an interior vector w
in Figure 3.5, for instance, splits the cone of index 5 into two cones of index 2 and 3,
respectively – and also a one-dimensional cone. Indeed, every possible triangulation
of C ′ into unimodular cones contains at least α two-dimensional cones!

Signed decompositions. The important new idea by Barvinok (1994b) was to use
so-called signed decompositions in addition to triangulations in order to reduce the
index of a cone. In our example, we can choose the vector w = (0, 1) from the outside
of the cone to define cones C1 = cone{b1,w} and C2 = cone{w,b2}; see Figure 3.6.
Using these cones, we have the inclusion-exclusion formula

g(C ′; z1, z2) = g(C1; z1, z2)− g(C2; z1, z2) + g(C1 ∩ C2; z1, z2)

30

3.1 Dimension two

5

b1

b2

w

⊕

w

1
b2

b1

1

⊕	

Figure 3.6: A signed decomposition of the cone of index 5 generated by b1 and b2

into the two unimodular cones spanned by {b1,w} and {b2,w}. We have
the inclusion-exclusion formula g(cone{b1,b2}; z) = g(cone{b1,w}; z)−
g(cone{b2,w}; z) + g(cone{w}; z).

It turns out that both cones C1 and C2 are unimodular, the only integer point in
the fundamental parallelepiped being the origin. We obtain the rational generating
functions

g(C1; z1, z2) =
1

(1− z1)(1− z2)
,

g(C2; z1, z2) =
1

(1− z1zα2)(1− z2)
,

g(C1 ∩ C2; z1, z2) =
1

1− z1zα2
,

hence the short formula

g(C ′; z1, z2) =
1

(1− z1)(1− z2)
− 1

(1− z1
1z

α
2)(1− z2)

+
1

1− z1zα2
.

In general, as we will see in the next section, we will not be able to obtain a de-
composition into unimodular cones in one simple step; however, we will show that
a signed decomposition can be constructed that provably reduces the index of cones
very quickly.

We continue in the next section with the general multidimensional theory.

31

Chapter 3 Barvinok’s short rational generating functions

3.2 Preparation for n dimensions: Decompositions of
polyhedra and cones

3.2.1 Indicator functions and inclusion–exclusion

Definition 3.1. The indicator function of a set A ⊆ Rd will be denoted by [A]; so
[A] : Rd → R with [A](x) = 1 if x ∈ A and 0 otherwise.

The indicator functions of sets of Rd span a vector space by pointwise addition
(and scalar multiplication), which is also an algebra with respect to pointwise multi-
plication of functions.

These operations are convenient because they represent the disjoint union and
intersection of sets:

[A] · [B] = [A ∩B], [A] + [B] = [A tB].

Calculations with indicator functions often give short and elegant proofs. We illus-
trate this with the inclusion–exclusion identity that generalizes the formula

[A1 ∪ A2] = [A1] + [A2]− [A1 ∩ A2]

to several sets. We will use this formula shortly.

Lemma 3.2 (Inclusion–exclusion). Let A1, . . . , Am ⊆ Rn. Then

[A1 ∪ · · · ∪ Am] =
∑
∅6=I⊆[m]

(−1)|I|−1

[⋂
i∈I

Ai

]

(Here [m] denotes {1, . . . ,m}.)

Proof. We write the “de Morgan formula”

Rn \ (A1 ∪ · · · ∪ Am) = (Rn \ A1) ∩ · · · ∩ (Rn \ Am)

as

1− [A1 ∪ · · · ∪ Am] = (1− [A1]) · · · (1− [Am]).

Multiplying out gives:

1− [A1 ∪ · · · ∪ Am] = 1 +
∑
∅6=I⊆[m]

(−1)|I|
∏
i∈I

[Ai],

which proves the result.

32

3.2 Preparation for n dimensions: Decompositions of polyhedra and cones

3.2.2 Gram–Brianchon and Brion

We now apply this identity to obtain an interesting formula for the indicator function
of a simplex in terms of the tangent cones of its faces.

Definition 3.3. Let P ⊆ Rd be a polyhedron. Let x ∈ P . Then the tangent cone
(supporting cone) of P at x is the shifted (“affine”) polyhedral cone defined by

tcone(P,x) = x + cone(P − x).

The tangent cone tcone(P,x) is the same as the cone of feasible directions, with
apex shifted to x. The inequality description of the tangent cones consists of the
inequalities of P that are active (tight, satisfied with equality) at x.

We will need the tangent cones of vertices and also, more generally, that of faces.

Definition 3.4. Let F ⊆ P be a face. Then the tangent cone of F is defined as

tcone(P, F) = tcone(P,xF),

where xF is any point in the relative interior of F .

Note that the tangent cone of a face F always contains the affine hull of the face,
and so the tangent cones of vertices are the only pointed ones.

Theorem 3.5 (Gram–Brianchon). Let P ⊆ Rd be any polyhedron; then

[P] =
∑
∅6=F

face of P

(−1)dimF [tcone(P, F)],

where the summation includes the face F = P .

We prove it for the case of the standard simplex ∆ = conv{ ei : i = 1, . . . , n } only.
The theorem holds, however, for arbitrary (also unbounded) polyhedra.

Proof. The simplex has the inequality description

∆ =
{

x ∈ Rn : 〈1,x〉 = 1, xi ≥ 0 for i = 1, . . . , n
}
.

Its affine hull is the hyperplane

A =
{

x ∈ Rn : 〈1,x〉 = 1
}
.

At a vertex ei, all inequalities “xj ≥ 0” for j 6= i are tight, so the corresponding
tangent cone has the description

tcone(∆, ei) =
{

x ∈ A : xj ≥ 0 for j 6= i
}
.

33

Chapter 3 Barvinok’s short rational generating functions

More generally, the simplex has precisely 2n faces (including the empty set and ∆
itself), which are indexed by the subsets I ⊆ {1, . . . , n},

FI = {x ∈ ∆ : xj = 0 for j ∈ I }
= conv{ ei : i /∈ I }, so dimFI = n− |I| − 1,

with
tcone(∆, FI) = {x ∈ A : xj ≥ 0 for j ∈ I }.

The facets (largest proper faces) of ∆ are indexed by singletons {j}, and their tangent
cones are affine halfspaces of A,

tcone(∆, F{j}) = {x ∈ A : xj ≥ 0 } =: Hj.

Thus, in general, we can write each tangent cone as an intersection of these halfspaces.

tcone(∆, FI) =
⋂
j∈I

Hj,

and of course

[∆] =
n⋂
j=1

Hj.

On the other hand, the union of the Hj is the entire affine space A (because if the
sum of the coordinates, 〈1,x〉 is positive, at least one coordinate is positive.)

From our inclusion–exclusion lemma, we get

[A] = [H1 ∪ · · · ∪Hn] =
∑
∅6=I⊆[n]

(−1)|I|−1

[⋂
i∈I

Hi

]
.

Since A = tcone(∆,∆), we get

[tcone(∆,∆)] =
∑
∅6=I([n]

(−1)|I|−1
[
tcone(∆, FI)

]
+ (−1)|n|−1[∆],

and, by rearranging, the desired identity.

When we read this identity “modulo contributions of non-pointed polyhedra”, it
simplifies considerably because the only pointed tangent cones belong to the vertices;
see Figure 3.7.

Corollary 3.6 (Brion’s theorem: decomposition modulo non-pointed polyhedra).
Let P ⊆ Rd be a polyhedron. Then

[P] ≡
∑

v vertex of P

[tcone(P,v)] (mod indicator functions of non-pointed polyhedra.)

34

3.2 Preparation for n dimensions: Decompositions of polyhedra and cones

(a) (b)

Figure 3.7: Brion’s theorem

3.2.3 Avoiding inclusion–exclusion with half-open decompositions

In this section, based on Köppe and Verdoolaege (2008), we show that identities of
indicator functions of full-dimensional polyhedra modulo lower-dimensional polyhe-
dra can be translated to exact identities of indicator functions of full-dimensional
half-open polyhedra. Thus, in triangulations etc., it is possible to avoid any hint of
inclusion–exclusion. This improves the computational complexity of the methods.

Theorem 3.7. Let ∑
i∈I1

εi[Pi] +
∑
i∈I2

εi[Pi] = 0 (3.6)

be a (finite) linear identity of indicator functions of closed polyhedra Pi ⊆ Rd, where
the polyhedra Pi are full-dimensional for i ∈ I1 and lower-dimensional for i ∈ I2, and
where εi ∈ Q. Let each closed polyhedron be given as

Pi =
{

x : 〈b∗i,j,x〉 ≤ βi,j for j ∈ Ji
}
. (3.7)

Let y ∈ Rd be a vector such that 〈b∗i,j,y〉 6= 0 for all i ∈ I1 ∪ I2, j ∈ Ji. For i ∈ I1,
we define the half-open polyhedron

P̃i =
{

x ∈ Rd : 〈b∗i,j,x〉 ≤ βi,j for j ∈ Ji with 〈b∗i,j,y〉 < 0,

〈b∗i,j,x〉 < βi,j for j ∈ Ji with 〈b∗i,j,y〉 > 0
}
.

(3.8)

Then ∑
i∈I1

εi[P̃i] = 0. (3.9)

35

Chapter 3 Barvinok’s short rational generating functions

≡ + +

(modulo lower-dimensional cones)

Figure 3.8: An identity, valid modulo lower-dimensional cones, corresponding to a
polyhedral subdivision of a cone

The geometry of Theorem 3.7 is illustrated in Figure 3.8 and Figure 3.10.

Proof. We will show that (3.9) holds for an arbitrary x̄ ∈ Rd. To this end, fix an
arbitrary x̄ ∈ Rd. We define

xλ = x̄ + λy for λ ∈ [0,+∞).

Consider the function

f : [0,+∞) 3 λ 7→
(∑
i∈I1

εi[P̃i]

)
(xλ).

We need to show that f(0) = 0. To this end, we first show that f is constant in a
neighborhood of 0.

First, let i ∈ I1 such that x̄ ∈ P̃i. For j ∈ Ji with 〈b∗i,j,y〉 < 0, we have 〈b∗i,j, x̄〉 ≤
βi,j, thus 〈b∗i,j,xλ〉 ≤ βi,j. For j ∈ Ji with 〈b∗i,j,y〉 > 0, we have 〈b∗i,j, x̄〉 < βi,j, thus

〈b∗i,j,xλ〉 < βi,j for λ > 0 small enough. Hence, xλ ∈ P̃i for λ > 0 small enough.

Second, let i ∈ I1 such that x̄ /∈ P̃i. Then either there exists a j ∈ Ji with 〈b∗i,j,y〉 <
0 and 〈b∗i,j, x̄〉 > βi,j. Then 〈b∗i,j,xλ〉 > βi,j for λ > 0 small enough. Otherwise, there
exists a j ∈ Ji with 〈b∗i,j,y〉 > 0 and 〈b∗i,j, x̄〉 ≥ βi,j. Then 〈b∗i,j,xλ〉 ≥ βi,j. Hence,

in either case, xλ /∈ P̃i for λ > 0 small enough.

Next we show that f vanishes on some interval (0, λ0). We consider the function

g : [0,+∞) 3 λ 7→
(∑
i∈I1

εi[Pi] +
∑
i∈I2

εi[Pi]

)
(xλ)

which is constantly zero by (3.6). Since [Pi](xλ) for i ∈ I2 vanishes on all but finitely
many λ, we have

g(λ) =

(∑
i∈I1

εi[Pi]

)
(xλ)

36

3.2 Preparation for n dimensions: Decompositions of polyhedra and cones

++=
?

(modulo lower-dimensional cones)

Figure 3.9: The technique of half-open exact decomposition. The above ad-hoc choice
of strict inequalities (broken lines) and weak inequalities (solid lines) ap-
pears to give an exact identity on first look. However, the apex of the
cone is still counted twice.

for λ from some interval (0, λ1). Also, [Pi](xλ) = [P̃i](xλ) for some interval (0, λ2).
Hence f(λ) = g(λ) = 0 for some interval (0, λ0).

Hence, since f is constant in a neighborhood of 0, it is also zero at λ = 0. Thus
the identity (3.9) holds for x̄.

Remark 3.8. Theorem 3.7 can be easily generalized to a situation where the weights
εi are not constants but continuous real-valued functions. In the proof, rather than
showing that f is constant in a neighborhood of 0, one shows that f is continuous
at 0.

The exact polyhedral subdivision of a closed polyhedral cone

For obtaining an exact polyhedral subdivision of a full-dimensional closed polyhedral
cone C = cone{b1, . . . ,bn},

[C] =
∑
i∈I1

[C̃i],

we apply the above theorem using an arbitrary vector y ∈ intC that avoids all facets
of the cones Ci, for instance

y =
n∑
i=1

(1 + γi)bi

for a suitable γ > 0.

37

Chapter 3 Barvinok’s short rational generating functions

= + +

Figure 3.10: The technique of half-open exact decomposition. The relative location
of the vector y (represented by a dot) determines which defining in-
equalities are strict (broken lines) and which are weak (solid lines).

The exact signed decomposition of half-open simplicial cones

Let C̃ ⊆ Rd be a half-open simplicial full-dimensional cone with the double descrip-
tion

C̃ =
{

x ∈ Rd : 〈b∗j ,x〉 ≤ 0 for j ∈ J≤ and 〈b∗j ,x〉 < 0 for j ∈ J<
}

(3.10)

C̃ =
{∑d

j=1 λjbj : λj ≥ 0 for j ∈ J≤ and λj > 0 for j ∈ J<
}

(3.11)

where J< ∪ J≤ = {1, . . . , d}, with the biorthogonality property for the outer normal
vectors b∗j and the ray vectors bi,

〈b∗j ,bi〉 = −δi,j =

{
−1 if i = j,

0 otherwise.
(3.12)

In the following we introduce a generalization of Barvinok’s signed decomposition
(Barvinok, 1994a) to half-open simplicial cones Ci, which will give an exact identity
of half-open cones. To this end, we first compute the usual signed decomposition of
the closed cone C = cl C̃,

[C] ≡
∑
i

εi[Ci] (mod lower-dimensional cones) (3.13)

using an extra ray w, which has the representation

w =
d∑
i=1

αibi where αi = −〈b∗i ,w〉. (3.14)

Each of the cones Ci is spanned by d vectors from the set {b1, . . . ,bd,w}. The signs
εi ∈ {±1} are determined according to the location of w, see (Barvinok, 1994a).

38

3.2 Preparation for n dimensions: Decompositions of polyhedra and cones

An exact identity

[C̃] =
∑
i

εi[C̃i] with ε ∈ {±1},

can now be obtained from (3.13) as follows. We define cones C̃i that are half-open
counterparts of Ci. We only need to determine which of the defining inequalities of
the cones C̃i should be strict. To this end, we first show how to construct a vector y
that characterizes which defining inequalities of C̃ are strict by the means of (3.8).

Lemma 3.9. Let

σi =

{
1 for i ∈ J≤,

−1 for i ∈ J<,
(3.15)

and let y ∈ R = int cone{σ1bi, . . . , σdbd} be arbitrary. Then

J≤ =
{
j ∈ {1, . . . , d} : 〈b∗j ,y〉 < 0

}
,

J< =
{
j ∈ {1, . . . , d} : 〈b∗j ,y〉 > 0

}
.

We remark that the construction of such a vector y is not possible for a half-open
non-simplicial cone in general.

Proof of Lemma 3.9. Such a y has the representation

y =
∑
i∈J≤

λibi −
∑
i∈J<

λibi with λi > 0.

Thus

〈b∗j ,y〉 =

{
−λj for j ∈ J≤,

+λj for j ∈ J<,

which proves the claim.

Now let y ∈ R be an arbitrary vector that is not orthogonal to any of the facets of
the cones C̃i. Then such a vector y can determine which of the defining inequalities
of the cones C̃i are strict.

In the following, we give a specific construction of such a vector y. To this end,
let bm be the unique ray of C̃ that is not a ray of C̃i. Then we denote by b̃∗0,m the

outer normal vector of the unique facet of C̃i not incident to w. Now consider any
facet F of a cone C̃i that is incident to w. Since C̃i is simplicial, there is exactly one
ray of C̃i, say bl, not incident to F . The outer normal vector of the facet is therefore
characterized up to scale by the indices l and m; thus we denote it by b̃∗l,m.

Let b0 = w. Then, for every outer normal vector b̃∗l,m and every ray bi, i = 0, . . . , d,
we have

βi;l,m := −〈b̃∗l,m,bi〉

> 0 for i = l,

= 0 for i 6= l,m,

∈ R for i = m.

(3.16)

39

Chapter 3 Barvinok’s short rational generating functions

Now the outer normal vector has the representation

b̃∗l,m =
d∑
i=1

βi;l,mb∗i .

The conditions of (3.16) determine the outer normal vector b̃∗l,m up to scale. For the

normals b̃∗0,m, we can choose

b̃∗0,m = αmb∗m. (3.17)

For the other facets b̃∗l,m, we can choose

b̃∗l,m = |αm|b∗l − signαm · αlb∗m. (3.18)

Now consider

y =
d∑
i=1

σi(|αi|+ γi)bi, (3.19)

which lies in the cone R for every γ > 0. We obtain

〈b̃∗0,m,y〉 = −σmαm(|αm|+ γm) (3.20)

and

〈b̃∗l,m,y〉 = |αm| 〈b∗l ,y〉 − signαm · αl〈b∗m,y〉
= − |αm|σl(|αl|+ γl) + signαm · αlσm(|αm|+ γm)

= (sign(αlαm)σm − σl) |αl| |αm|
− σl |αm| γl + sign(αlαm)σm |αl| γm, (3.21)

for l 6= 0. The right-hand side of (3.21), as a polynomial in γ, only has finitely
many roots. Thus there are only finitely many values of γ for which a scalar product
〈b̃∗l,m,y〉 can vanish for any of the finitely many facet normals b̃∗l,m. Let γ > 0 be an
arbitrary number for which none of the scalar products vanishes. Then the vector y
defined by (3.19) determines which of the defining inequalities of the cones C̃i should
be strict.

Remark 3.10. It is possible to construct an a-priori vector y that is suitable to
determine which defining inequalities are strict for all the cones that arise in the
hierarchy of triangulations and signed decompositions of a cone C = cone{b1, . . . ,bn}
in Barvinok’s algorithm. The construction uses the methods from Köppe (2007) and
can be found in Köppe and Verdoolaege (2008).

40

3.2 Preparation for n dimensions: Decompositions of polyhedra and cones

Remark 3.11. For performing the exact signed decomposition in a software imple-
mentation, it is not actually necessary to construct the vector y and to evaluate scalar
products. In the following, we show that we can devise simple, “combinatorial” rules
to decide which defining inequalities should be strict. To this end, let γ > 0 in (3.19)
be small enough that none of the signs

σl,m = − sign〈b̃∗l,m,y〉

given by (3.21) change if γ is decreased even more. We can now determine σl,m for
all possible cases.

Case 0: αm = 0. The cone would be lower-dimensional in this case, since w lies in
the space spanned by the ray vectors except bm, and is hence discarded.
Case 1: l = 0. From (3.20), we have

σ0,m = sign(αm)σm.

Case 2: l 6= 0, αl = 0, αm 6= 0. Here we have 〈b̃∗l,m,y〉 = −σl |αm| γl, thus

σl,m = σl.

Case 3: l 6= 0, αlαm > 0. In this case (3.21) simplifies to

〈b̃∗l,m,y〉 = (σm − σl) |αl| |αm| − σl |αm| γl + σm |αl| γm. (3.22)

Case 3 a: σl = σm. Here the first term of (3.22) cancels, so

σl,m = − sign〈b̃∗l,m,y〉 =

{
1 if l < m,

−1 if l > m.

Case 3 b: σl 6= σm. Here the first term of (3.22) dominates, so

σl,m = − sign〈b̃∗l,m,y〉 = σl.

Case 4: l 6= 0, αlαm < 0. In this case (3.21) simplifies to

〈b̃∗l,m,y〉 = −(σm + σl) |αl| |αm| − σl |αm| γl − σm |αl| γm. (3.23)

Case 4 a: σl = σm. Here the first term of (3.23) dominates, so

σl,m = σl = σm.

Case 4 b: σl 6= σm. Here the first term of (3.23) cancels, so

σl,m = − sign〈b̃∗l,m,y〉 =

{
σl if l < m,

σm if l > m.

Further details and examples can be found in Köppe and Verdoolaege (2008).

41

Chapter 3 Barvinok’s short rational generating functions

3.3 Generating functions and the algorithm of
Barvinok

Generating functions as formal Laurent series. Let P ⊆ Rd be a rational polyhe-
dron. We first define its generating function as a formal series, that is, without any
consideration of convergence properties. Since we do not wish to confine our polyhe-
dron to the non-negative orthant, the generating function will have monomials with
negative exponents. Therefore a formal power series is not sufficient; we need formal
Laurent series.

We note that usually formal Laurent series are defined as series of the form∑
(−M,...,−M)≤α∈Zd

cαzα

for some integer M . Here (and in the following) we are using the multi-exponent no-
tation zα =

∏d
i=1 z

αi
i . Since there is only a finite number of monomials with negative

exponents, the multiplication of series is well-defined (because each coefficient of the
product series is just a finite sum). Hence these “one-sided” infinite series form a
ring, which is usually denoted by Q((z1, . . . , zd)).

However, in order to deal with arbitrary polyhedra, we will be in need of “two-
sided” formal Laurent series, in which an infinite number of monomials with negative
exponents can appear. Note that the multiplication of such series is not defined in
general, so the series only form a module Z[[z1 . . . , zd, z

−1
1 , . . . , z−1

d]] (over the ring of
integers Z or of Laurent polynomials Z[z1, . . . , zd, z

−1
1 , . . . , z−1

d]), but not a ring.

Definition 3.12. The generating function of P ∩ Zd is defined as the formal (two-
sided) Laurent series

g̃(P ; z) =
∑

α∈P∩Zd
zα ∈ Z[[z1, . . . , zd, z

−1
1 , . . . , z−1

d]].

As we remarked in the introduction, the encoding of the set of lattice points of a
polyhedron as a formal Laurent series does not give an immediate benefit in terms of
complexity. We will get short formulas only when we can identify the Laurent series
with certain rational functions.

The map from formal Laurent series to rational functions. If P is a bounded
polyhedron (a polytope) or if P is unbounded, but does not contain any lattice point,
then g̃(P ; z) is a Laurent polynomial (i.e., a finite sum of monomials with arbitrary
– positive or negative – integer exponents). Clearly every such Laurent polynomial
can be naturally identified with a rational function g(P ; z),

Z[z1, . . . , zd, z
−1
1 , . . . , z−1

d] ↪→ Q(z1, . . . , zd),

zα 7→ zα.

42

3.3 Generating functions and the algorithm of Barvinok

Convergence comes into play whenever P is not bounded, since then g̃(P ; z) can be
an infinite formal sum. We first consider the case of a pointed polyhedron P , i.e., P
does not contain a straight line.

Theorem 3.13. Let P ⊆ Rd be a pointed rational polyhedron. Then there exists a
non-empty open subset U ⊆ Cd such that the series g̃(P ; z) converges absolutely and
uniformly on every compact subset of U to a rational function g(P ; z) ∈ Q(z1, . . . , zd).
The rational function g(P ; z) is independent from the choice of U .

Remark 3.14. We remark that an arbitrary formal Laurent series g̃(z) ∈ Z[[z1, . . . , zd,
z−1

1 , . . . , z−1
d]], when it converges absolutely and uniformly on every compact sub-

set of some non-empty open set U , usually defines a meromorphic function g(z) ∈
C((z1, . . . , zd, z

−1
1 , . . . , z−1

d)) on U . This is a much larger class of functions than ra-
tional functions. This already happens when we allow irrational polyhedra.

Proof of Theorem 3.13 (sketch). First consider the case of a simplicial rational cone,
i.e., K = v + BRd

+ with linearly independent basis vectors b1, . . . ,bd (i.e., repre-
sentatives of its extreme rays) given by the columns of some matrix B ∈ Zd×d. We
assume that the basis vectors are primitive vectors of the standard lattice Zd. Then
the index of K is defined to be indK = |detB|; it can also be interpreted as the car-
dinality of Π∩Zd, where Π is the fundamental parallelepiped of K, i.e., the half-open
parallelepiped

Π = v +
{∑d

i=1 λibi : 0 ≤ λi < 1
}
.

We remark that the set Π∩Zd can also be seen as a set of representatives of the cosets
of the lattice BZd in the standard lattice Zd; we shall make use of this interpretation
in ??. Then the generating function is, as illustrated in the two-dimensional case
(section 3.1), given by a geometric series. The region U of convergence is related to
the dual cone of K, and is always full-dimensional because K is pointed.

For the case of a pointed rational cone K, we first compute a triangulation into
simplicial cones. Using the technique of subsection 3.2.3, we construct a set-theoretic
partition of K into half-open simplicial cones. The corresponding series have domains
of convergence that overlap in a full-dimensional set related to the dual cone of K.

Finally, for the case of a pointed rational polyhedron P , we cone over the polyhe-
dron, i.e., we consider the cone K := { (x, ξx) : x ∈ P, ξ ≥ 0 } ⊂ Rd+1. This is
a pointed rational cone, to which we can associate the rational function g(K; z, ζ),
where ζ corresponds to the extra dimension. Then

∂

∂ζ
g(K; z, ζ)

∣∣∣
ζ=0

is the desired rational function for P .

When P contains an integer point and also a straight line, there does not exist any
point z ∈ Cd where the series g̃(P ; z) converges absolutely.

43

Chapter 3 Barvinok’s short rational generating functions

Example 3.15. We consider the univariate two-sided infinite series

g̃(R; z) =
+∞∑

k=−∞

zk ∈ Z[[z, z−1]], (3.24)

which is the generating function of Z. It is clear that this series does not converge
absolutely for any z ∈ C, since for each z, the positive or the negative half-series of
magnitudes diverges:

+∞∑
k=0

|z|k = +∞ for |z| ≥ 1,

0∑
k=−∞

|z|k = +∞ for |z| ≤ 1.

Now let us consider the general case. Let x ∈ P ∩ Zd and t ∈ Zd \ {0} such that
x + tR ⊆ P . Then g̃(P ; z) contains the subseries

+∞∑
k=−∞

zx+kt,

which is equivalent (by a monomial substitution) to series (3.24) from the example.
Thus there does not exist any point where the series converges absolutely, so we
cannot use convergence to define a rational function g(P ; z).

Lawrence (1991) and, independently, Pukhlikov and Khovanskii (1993) showed
how to assign a rational function to arbitrary polyhedra in a “consistent” (valuative)
way.

Theorem 3.16 (Lawrence–Khovanskii–Pukhlikov). There exists a linear map F
(valuation) from the vector space spanned by the indicator functions of rational poly-
hedra in Rd to the space Q(z1, . . . , zd) of rational functions such that:

1. For a pointed rational polyhedron P , the function F ([P])(z) equals the function
g(P ; z) defined by the above convergent series.

2. For any integer vector t ∈ Zd, we have F ([t + P]) = ztF ([P]).

3. For any non-pointed rational polyhedron P , we have F ([P]) = 0.

Proof (sketch). For pointed rational polyhedra, define F using g.
Show linearity of the map F for pointed rational polyhedra. Given a linear equation∑
i αi[Pi] = 0, where the Pi are pointed, one needs to show that

∑
i αiF [Pi] = 0

holds. Note that the series associated with the Pi do not necessarily have a common

44

3.3 Generating functions and the algorithm of Barvinok

domain of convergence; but using inclusion–exclusion one can break the formula
down to obtain a common domain of convergence, so the definition of g(Pi, z) using
convergent series can be used.

Thus, F can be extended by linearity to all rational polyhedra. The translation
property holds for pointed polyhedra and clearly extends by linearity. Finally, if P
is non-pointed, it contains a rational line, so [P] = [t + P] for some 0 6= t ∈ Zd, and
thus F ([P]) = ztF ([P]), and so F ([P]) = 0 because zt is not a zero-divisor.

Taking all together, we define:

Definition 3.17. The rational function g(P ; z) = F ([P])(z) ∈ Q(z1, . . . , zd) defined
as above is called the rational generating function of P ∩ Zd.

The theorem of Brion. From the decomposition of polyhedra, modulo non-pointed
polyhedra, into vertex cones (Corollary 3.6), the following theorem follows.

Theorem 3.18 (Brion, 1988). Let P be a rational polyhedron and V (P) be the set
of vertices of P . Then,

gP (z) =
∑

v∈V (P)

gCP (v)(z),

where CP (v) is the tangent cone of v.

It needs to be remarked that Brion obtained this theorem with different techniques
and earlier than the results of Lawrence (1991) and Pukhlikov and Khovanskii (1993);
see also Barvinok and Pommersheim (1999a). See also Beck et al. (2006) for an
interesting discussion of this and related theorems.

We remark that in the case of a non-pointed polyhedron P , i.e., a polyhedron that
has no vertices because it contains a straight line, both sides of the equation are zero.

Construction of Barvinok’s signed decomposition. The missing link to an efficient
algorithm is a procedure to compute a signed decomposition of the simplicial cone
K (spanned by linearly independent integer vectors b1, . . . ,bd) to produce other
simplicial cones with smaller index. Let w be any nonzero vector of Zd. Let Ki

denote the cone spanned by the vectors b1, . . . ,bi−1,w,bi+1, . . . ,bd. Then there
exist εi ∈ ±1 such that

[K] ≡
d∑
i=1

εi[Ki] (mod indicator functions of non-pointed polyhedra).

In general, these cones form a signed decomposition of K (see Figure 3.6); if w lies
inside K, then εi = 1, and the cones form a triangulation of K (see Figure 3.5). The
goal is to simultaneously reduce the index of the cones Ki by a specific choice of w.

45

Chapter 3 Barvinok’s short rational generating functions

Let B∗ = (B−1)>, with column vectors b∗1, . . . ,b
∗
d, be the biorthonormal basis, i.e.,

〈b∗i ,bj〉 = δij. If we write w =
∑d

i=1 αib
i, then αi = 〈b∗i ,w〉.

Collecting the determinants of the cones Ki into a vector, we obtaindet(w,b2, . . . ,bd−1,bd)
...

det(b1,b2, . . . ,bd−1,w)

 =

det(α1b1,b2, . . . ,bd−1,bd)
...

det(b1,b2, . . . ,bd−1, αdbd)

= detB ·

〈b
∗
1,w〉
...

〈b∗d,w〉

= detB ·B∗w.

Since w ∈ Zn is arbitrary nonzero, simultaneously reducing the index means to solve
the shortest vector problem, with respect to the `∞-norm, in the lattice generated by
detB ·B∗. (This construction is due to Dyer and Kannan (1997).) Using the bound
from Lemma 2.6, we obtain

‖w∗‖∞ ≤
(
(detB)d(detB)−1

)1/d
= (detB)(d−1)/d.

Thus the cones in the decomposition have

log indKi ≤ d−1
d

log indK;

that is, the logarithm of the index decreases geometrically in this construction.
The resulting cones and their intersecting proper faces (arising in an inclusion-

exclusion formula) are recursively processed, until unimodular cones, i.e., cones of
index 1, or cones of index smaller than some chosen constant are obtained. For such
low-index cones v + BRd

+, the rational generating function can be easily written
down as ∑

a∈Π∩Zd za∏d
j=1(1− zbj)

, (3.25)

where Π is the fundamental parallelepiped of the cone.
In practical implementations of Barvinok’s algorithm, one observes that in the

hierarchy of cone decompositions, the index of the decomposed cones quickly descends
from large numbers to fairly low numbers. The “last mile,” i.e., decomposing many
cones with fairly low index, creates a huge number of unimodular cones and thus is
the bottleneck of the whole computation in many instances. In practice, one therefore
stops decomposing cones that have an index smaller than about 1000.

The recursive decomposition of cones defines a decomposition tree. Due to the
descent of the indices in the signed decomposition procedure, the following estimate
holds for its depth:

46

3.3 Generating functions and the algorithm of Barvinok

Lemma 3.19 (Barvinok, 1994b). Let BRd
+ be a simplicial full-dimensional cone,

whose basis is given by the columns of the matrix B ∈ Zd×d. Let D = |detB|. Then
the depth of the decomposition tree is at most

k(D) =

⌊
1 +

log2 log2D

log2
d
d−1

⌋
. (3.26)

Because at each decomposition step at most d cones are created and the depth of
the tree is doubly logarithmic in the index of the input cone, one obtains a polyno-
miality result in fixed dimension, which was first proved by Barvinok (1994b):

Theorem 3.20 (Barvinok, 1994b). Let d be fixed. There exists a polynomial-time
algorithm for computing the rational generating function of a polyhedron P ⊆ Rd

given by rational inequalities.

The above discussion contains algorithmic refinements upon Barvinok’s original
algorithm, which improve the theoretical and practical efficiency of the algorithm.

The computation of the integer points in the fundamental parallelepiped. To
enumerate all points in Π ∩ Zd and compute the numerator of (3.25), we follow the
technique of (Barvinok, 1993, Lemma 5.1), which we adapt for the case of half-open
cones.

Lemma 3.21. Let B be the matrix with the bj as columns and let S be the Smith
normal form of B, i.e., BV = WS, with V and W unimodular matrices and S
a diagonal matrix S = diag s. Then, if Π is the fundamental parallelepiped of the
half-open cone (section 3.2.3), then

Π ∩ Zd = {α(k) : kj ∈ Z, 0 ≤ kj < sj },

with

α(k) = v +
∑
j∈J≤

frac
〈
b∗j ,v −Wk

〉
bj +

∑
j∈J<

{{〈
b∗j ,v −Wk

〉}}
bj

= Wk−
∑
j∈J≤

⌊〈
b∗j ,v −Wk

〉⌋
bj −

∑
j∈J<

⌈〈
b∗j ,v −Wk

〉
− 1
⌉

bj,

with frac · the (lower) fractional part fracx = x−bxc and {{·}} the (upper) fractional
part {{x}} = x− dx− 1e = 1− frac−x.

Proof. It is clear that each α(k) ∈ Π ∩ Zd. To see that all integer points in Π are
exhausted, note that detB = detS and that all α(k) are distinct. The latter follows
from the fact that α(k) can be written as α(k) = Wk + Bγ = Wk + WSV −1γ
for some γ ∈ Zd. If α(k1) = α(k2), we must therefore have k1 ≡ k2 (mod s), i.e.,
k1 = k2.

47

Chapter 3 Barvinok’s short rational generating functions

The overall Barvinok algorithm. We summarize Barvinok’s algorithm below.

Algorithm 3.22 (Barvinok’s algorithm, primal half-open variant).

Input: A polyhedron P ⊂ Rd given by rational inequalities.
Output: The rational generating function for P ∩ Zd in the form

gP (z) =
∑
i∈I

εi

∑
a∈Ai z

a∏d
j=1(1− zbij)

(3.27)

where εi ∈ {±1}, ai ∈ Zd, and bij ∈ Zd.

1. Compute all vertices vi and corresponding supporting cones Ci of P .

2. Triangulate Ci into simplicial cones Cij

3. Replace cones by half-open variants.

4. Apply signed half-open decomposition to the cones vi+Cij to obtain unimodular
(or low-index) cones vi + Cijl.

5. Enumerate the integer points in the fundamental parallelepipeds of all resulting
cones vi + Cijl to obtain the sets Ai.

6. Write down the formula (3.27).

Variants and implementations of the algorithm. The original algorithm by Barvi-
nok (1994b) used decompositions into closed cones, inclusion–exclusion to handle the
intersection of proper faces, and Lenstra’s algorithm to obtain the decomposition vec-
tor for constructing the signed decomposition. The use of a shortest vector algorithm
for this purpose appeared in Dyer and Kannan (1997). A dual variant of the algorithm
appeared in Barvinok and Pommersheim (1999a); the “duality trick” (decomposing
the polars of cones) allowed to remove the use of inclusion–exclusion to handle the
intersection of proper faces. The practical benefit of stopping the decomposition be-
fore reaching unimodular cones was explored in Köppe (2007). A primal algorithm
that avoids inclusion–exclusion using “irrational” (Beck and Sottile, 2007) decompo-
sitions appeared in Köppe (2007). The variant using half-open decompositions is a
refinement of this technique, which appeared first in Köppe and Verdoolaege (2008).
Since stopped decomposition works significantly better with a primal algorithm than
a dual algorithm, as observed in Köppe (2007), the current method of choice is to use
the primal half-open algorithm with stopped decomposition, which was presented in
this section.

Many of these variants are implemented in the software packages LattE macchiato

(Köppe, 2008) and barvinok (Verdoolaege, 2007). Instead of using the vertex cones
of a polytope via Brion’s theorem, one can also do the computations using the cone

48

3.4 Evaluation (specialization)

over the polytope as in the proof of the Lawrence–Khovanskii–Pukhlikov theorem;
this is known as the “homogenized” variant. For some polytopes, it is more efficient
to compute triangulations in the dual space. Using dual triangulations and primal
signed decompositions is known as the “primal” variant, whereas using primal trian-
gulations and primal signed decompositions is known as the “all-primal” algorithm.

3.4 Evaluation (specialization)

We now compute the number of integer points #(P ∩ Zn) from the multivariate
rational generating function gP (z). This amounts to the problem of evaluating or
specializing a rational generating function gP (z) at the point z = 1. This is a pole
of each of its summands but a regular point (removable singularity) of the function
itself. From now on we call this the specialization problem.

To this end, let the generating function of a polytope P ⊆ Rn be given in the form

gP (z) =
∑
i∈I

εi
zai∏si

j=1(1− zbij)
(3.28)

where εi ∈ {±1}, ai ∈ Zn, and bij ∈ Zn \ {0}. Let s = maxi∈I si be the maximum
number of binomials in the denominators. In general, if s is allowed to grow, more
poles need to be considered for each summand, so the evaluation will need more
computational effort.

Remark 3.23. In the literature, the specialization problem has been considered in
various degrees of generality. In the original paper by Barvinok (1994b, Lemma 4.3),
the dimension n is fixed, and each summand has exactly si = n binomials in the
denominator. The same restriction can be found in the survey by Barvinok and
Pommersheim (1999b). In the more general algorithmic theory of monomial sub-
stitutions developed by Barvinok and Woods (2003), Woods (2004), there is no as-
sumption on the dimension n, but the number s of binomials in the denominators is
fixed. The same restriction appears in the paper by Verdoolaege and Woods (2008,
Lemma 2.15). In a recent paper, Barvinok (2006a, section 5) gives a polynomial-time
algorithm for the specialization problem for rational functions of the form

g(z) =
∑
i∈I

εi
zai∏s

j=1 (1− zbij)
γij (3.29)

where the dimension n is fixed, the number s of different binomials in each denomi-
nator equals n, but the multiplicity γij is varying. Here we show that the technique
from Barvinok (2006a, section 5) can be implemented in a way such that we obtain
a polynomial-time algorithm even for the case of a general formula (3.27), when the
dimension and the number of binomials are allowed to grow. The present section is
based on De Loera et al. (2009a).

49

Chapter 3 Barvinok’s short rational generating functions

Theorem 3.24 (Polynomial-time specialization). (a) There exists an algorithm for
computing the specialization of a rational function of the form

gP (z) =
∑
i∈I

εi
zai∏si

j=1(1− zbij)
(3.30)

at its removable singularity z = 1, which runs in time polynomial in the encoding
size of its data εi ∈ Q, ai ∈ Zn for i ∈ I and bij ∈ Zn for i ∈ I, j = 1, . . . , si,
even when the dimension n and the numbers si of terms in the denominators are
not fixed.

(b) In particular, there exists a polynomial-time algorithm that, given data εi ∈ Q,
ai ∈ Zn for i ∈ I and bij ∈ Zn for i ∈ I, j = 1, . . . , si describing a rational
function in the form (3.30), computes a vector λ ∈ Qn with 〈λ,bij〉 6= 0 for all
i, j and rational weights wi,l for i ∈ I and l = 0, . . . , si. Then the number of
integer points is given by

#(P ∩ Zn) =
∑
i∈I

εi

si∑
l=0

wi,l 〈λ, ai〉l . (3.31)

The remainder of this section contains the proof of Theorem 3.24. We follow
Barvinok and Pommersheim (1999b) and recall the definition of Todd polynomials.
We will prove that they can be efficiently evaluated in rational arithmetic.

Definition 3.25. We consider the function

H(x, ξ1, . . . , ξs) =
s∏
i=1

xξi
1− exp{−xξi}

,

a function that is analytic in a neighborhood of 0. The m-th (s-variate) Todd poly-
nomial is the coefficient of xm in the Taylor expansion

H(x, ξ1, . . . , ξs) =
∞∑
m=0

tdm(ξ1, . . . , ξs)x
m.

We remark that, when the numbers s and m are allowed to vary, the Todd poly-
nomials have an exponential number of monomials.

Theorem 3.26. The Todd polynomial tdm(ξ1, . . . , ξs) can be evaluated for given ra-
tional data ξ1, . . . , ξs in time polynomial in s, m, and the encoding length of ξ1, . . . , ξs.

The proof makes use of the following lemma.

50

3.4 Evaluation (specialization)

Lemma 3.27. The function h(x) = x/(1 − e−x) is a function that is analytic in a
neighborhood of 0. Its Taylor series about x = 0 is of the form

h(x) =
∞∑
n=0

bnx
n where bn =

1

n! (n+ 1)!
cn (3.32)

with integer coefficients cn that have a binary encoding length of O(n2 log n). The
coefficients cn can be computed from the recursion

c0 = 1

cn =
n∑
j=1

(−1)j+1

(
n+ 1

j + 1

)
n!

(n− j + 1)!
cn−j for n = 1, 2,

(3.33)

Proof. The reciprocal function h−1(x) = (1− e−x)/x has the Taylor series

h−1(x) =
∞∑
i=0

anx
n with an =

(−1)n

(n+ 1)!
.

Using the identity h−1(x)h(x) =
(∑∞

n=0 anx
n
)(∑∞

n=0 bnx
n
)

= 1, we obtain the recur-
sion

b0 = 1
a0

= 1

bn = −(a1bn−1 + a2bn−2 + · · ·+ anb0) for n = 1, 2,
(3.34)

We prove (3.32) inductively. Clearly b0 = c0 = 1. For n = 1, 2, . . . , we have

cn = n! (n+ 1)! bn

= −n! (n+ 1)! (a1bn−1 + a2bn−2 + · · ·+ anb0)

= n! (n+ 1)!
n∑
j=1

(−1)j+1

(j + 1)!
· 1

(n− j)! (n− j + 1)!
cn−j

=
n∑
j=1

(−1)j+1 (n+ 1)!

(j + 1)! (n− j)!
· n!

(n− j + 1)!
cn−j.

Thus we obtain the recursion formula (3.33), which also shows that all cn are integers.
A rough estimate shows that

|cn| ≤ n(n+ 1)!n! |cn−1| ≤
(
(n+ 1)!

)2 |cn−1| ,

thus |cn| ≤
(
(n+ 1)!

)2n
, so cn has a binary encoding length of O(n2 log n).

Proof of Theorem 3.26. By definition, we have

H(x, ξ1, . . . , ξs) =
∞∑
m=0

tdm(ξ1, . . . , ξs)x
m =

s∏
j=1

h(xξj).

51

Chapter 3 Barvinok’s short rational generating functions

From Lemma 3.27 we have

h(xξj) =
m∑
n=0

βj,nx
n + o(xm) where βj,n =

ξnj
n! (n+ 1)!

cn (3.35)

with integers cn given by the recursion (3.33). Thus we can evaluate tdm(ξ1, . . . , ξs)
by summing over all the possible compositions n1 + · · ·+ns = m of the order m from
the orders nj of the factors:

tdm(ξ1, . . . , ξs) =
∑

(n1,...,ns)∈Zs+
n1+···+ns=m

β1,n1 . . . βs,ns (3.36)

We remark that the length of the above sum is equal to the number of compositions
of m into s non-negative parts,

C′s(m) =

(
m+ s− 1

s− 1

)
=

(m+ s− 1)(m+ s− 2) . . . (m+ s− (s− 1))

(s− 1)(s− 2) . . . 2 · 1
= Ω

((
1 + m

s−1

)s)
,

which is exponential in s (whenever m ≥ s). Thus we cannot evaluate the for-
mula (3.36) efficiently when s is allowed to grow.

However, we show that we can evaluate tdm(ξ1, . . . , ξs) more efficiently. To this end,
we multiply up the s truncated Taylor series (3.35), one factor at a time, truncating
after order m. Let us denote

H1(x) = h(xξ1)

H2(x) = H1(x) · h(xξ2)

...

Hs(x) = Hs−1(x) · h(xξs) = H(x, ξ1, . . . , ξs).

Each multiplication can be implemented in O(m2) elementary rational operations.
We finally show that all numbers appearing in the calculations have polynomial
encoding size. Let Ξ be the largest binary encoding size of any of the rational
numbers ξ1, . . . , ξs. Then every βj,n given by (3.35) has a binary encoding size
O(Ξn5 log3 n). Let Hj(x) have the truncated Taylor series

∑m
n=0 αj,nx

n + o(xm) and
let Aj denote the largest binary encoding length of any αj,n for n ≤ m. Then

Hj+1(x) =
m∑
n=0

αj+1,nx
n + o(xm) with αj+1,n =

n∑
l=0

αj,lβj,n−l.

52

3.4 Evaluation (specialization)

Thus the binary encoding size of αj+1,n (for n ≤ m) is bounded byAj+O(Ξm5 log3m).
Thus, after s multiplication steps, the encoding size of the coefficients is bounded by
O(sΞm5 log3m), a polynomial quantity.

Proof of Theorem 3.24. Parts (a) and (b). We recall the technique of Barvinok
(1994b, Lemma 4.3), refined by Barvinok (2006a, section 5).

We first construct a rational vector λ ∈ Zn such that 〈λ,bij〉 6= 0 for all i, j.
One such construction is to consider the moment curve λ(ξ) = (1, ξ, ξ2, . . . , ξn−1) ∈
Rn. For each exponent vector bij occuring in a denominator of (3.27), the function
fij : ξ 7→ 〈λ(ξ),bij〉 is a polynomial function of degree at most n− 1. Since bij 6= 0,
the function fij is not identically zero. Hence fij has at most n − 1 zeros. By
evaluating all functions fij for i ∈ I and j = 1, . . . , si at M = (n−1)s|I|+1 different
values for ξ, for instance at the integers ξ = 0, . . . ,M , we can find one ξ = ξ̄ that
is not a zero of any fij. Clearly this search can be implemented in polynomial time,
even when the dimension n and the number s of terms in the denominators are not
fixed. We set λ = λ(ξ̄).

For τ > 0, let us consider the points zτ = eτλ = (exp{τλ1}, . . . , exp{τλn}). We
have

zbij
τ =

n∏
l=1

exp{τλlbijl} = exp{τ 〈λ,bij〉};

since 〈λ,bij〉 6= 0 for all i, j, all the denominators 1 − z
bij
τ are nonzero. Hence for

every τ > 0, the point zτ is a regular point not only of g(z) but also of the individual
summands of (3.27). We have

g(1) = lim
τ→0+

∑
i∈I

εi
zai
τ∏si

j=1(1− z
bij
τ)

= lim
τ→0+

∑
i∈I

εi
exp{τ 〈λ, ai〉}∏si

j=1(1− exp{τ 〈λ,bij〉})

= lim
τ→0+

∑
i∈I

εi τ
−si exp{τ 〈λ, ai〉}

si∏
j=1

τ

1− exp{τ 〈λ,bij〉}

= lim
τ→0+

∑
i∈I

εi τ
−si exp{τ 〈λ, ai〉}

si∏
j=1

−1

〈λ,bij〉
h(−τ 〈λ,bij〉)

= lim
τ→0+

∑
i∈I

εi
(−1)si∏si

j=1 〈λ,bij〉
τ−si exp{τ 〈λ, ai〉}H(τ,−〈λ,bi1〉 , . . . ,−〈λ,bisi〉)

where H(x, ξ1, . . . , ξsi) is the function from Definition 3.25. We will compute the
limit by computing the constant term of the Laurent expansion of each summand
about τ = 0. Now the function τ 7→ exp{τ 〈λ, ai〉} is holomorphic and has the Taylor

53

Chapter 3 Barvinok’s short rational generating functions

series

exp{τ 〈λ, ai〉} =

si∑
l=0

αi,lτ
l + o(τ si) where αi,l =

〈λ, ai〉l

l!
, (3.37)

and H(τ, ξ1, . . . , ξsi) has the Taylor series

H(τ, ξ1, . . . , ξs) =

si∑
m=0

tdm(ξ1, . . . , ξs)τ
m + o(τ si).

Because of the factor τ−si , which gives rise to a pole of order si in the summand, we
can compute the constant term of the Laurent expansion by summing over all the
possible compositions si = l + (si − l) of the order si:

g(1) =
∑
i∈I

εi
(−1)si∏si

j=1 〈λ,bij〉

si∑
l=0

〈λ, ai〉l

l!
tdsi−l(−〈λ,bi1〉 , . . . ,−〈λ,bisi〉). (3.38)

We use the notation

wi,l = (−1)si
tdsi−l(−〈λ,bi,1〉, . . . ,−〈λ,bi,si〉)

l! · 〈λ,bi,1〉 · · · 〈λ,bi,si〉
for i ∈ I and l = 0, . . . , si;

these rational numbers can be computed in polynomial time using Theorem 3.26.
We now obtain the formula of the claim,

g(1) =
∑
i∈I

εi

si∑
l=0

wi,l 〈λ, ai〉l .

A general theorem on monomial specialization appears in Barvinok and Woods
(2003).

3.5 Boolean operations and projections

Barvinok and Woods (2003) further developed a set of powerful manipulation rules
for using these short rational functions in Boolean constructions on various sets of
lattice points.

Here we assume that the polyhedron P = {u ∈ Rn : Au ≤ b } is bounded.

Theorem 3.28 (Intersection Lemma; Theorem 3.6 in Barvinok and Woods (2003)).
Let ` be a fixed integer. Let S1, S2 be finite subsets of Zn. Let g(S1; x) and g(S2; x) be
their generating functions, given as short rational functions with at most ` binomials
in each denominator. Then there exists a polynomial time algorithm, which computes

g(S1 ∩ S2; x) =
∑
i∈I

γi
xci

(1− xdi1) . . . (1− xdis)

54

3.5 Boolean operations and projections

with s ≤ 2`, where the γi are rational numbers, ci,dij are nonzero integer vectors,
and I is a polynomial-size index set.

The following theorem was proved by Barvinok and Woods using Theorem 3.28:

Theorem 3.29 (Boolean Operations Lemma; Corollary 3.7 in Barvinok and Woods
(2003)). Let m and ` be fixed integers. Let S1, S2, . . . , Sm be finite subsets of Zn.
Let g(Si; x) for i = 1, . . . ,m be their generating functions, given as short rational
functions with at most ` binomials in each denominator. Let a set S ⊆ Zn be defined
as a Boolean combination of S1, . . . , Sm (i.e., using any of the operations ∪, ∩, \).
Then there exists a polynomial time algorithm, which computes

g(S; x) =
∑
i∈I

γi
xci

(1− xdi1) . . . (1− xdis)

where s = s(`,m) is a constant, the γi are rational numbers, ci,dij are nonzero
integer vectors, and I is a polynomial-size index set.

We will use the Intersection Lemma and the Boolean Operations Lemma to extract
special monomials present in the expansion of a generating function. The essential
step in the intersection algorithm is the use of the Hadamard product (Barvinok and
Woods, 2003, Definition 3.2) and a special monomial substitution. The Hadamard
product is a bilinear operation on rational functions (we denote it by ∗). The compu-
tation is carried out for pairs of basic rational summands. Note that the Hadamard
product m1 ∗m2 of two monomials m1,m2 is zero unless m1 = m2.

Another key subroutine introduced by Barvinok and Woods is the following Pro-
jection Theorem.

Theorem 3.30 (Projection Theorem; Theorem 1.7 in Barvinok and Woods (2003)).
Assume the dimension n is a fixed constant. Consider a rational polytope P ⊂ Rn

and a linear map T : Zn → Zk. There is a polynomial time algorithm which computes
a short representation of the generating function f

(
T (P ∩ Zn); x

)
.

This results again uses algorithmic geometry of numbers techniques, such as the
computation of a Kannan partition of the parameter space of parametric polyhedra
into cells where the flatness direction is constant. Details, using a strengthened
construction of a Kannan partition due to Eisenbrand and Shmonin (2008) can be
found in Köppe et al. (2008b).

55

Chapter 3 Barvinok’s short rational generating functions

56

Chapter 4

Mixed-integer polynomial
optimization via the summation
method

max
{
f (x) : x ∈ P ∩ Zd

}
= lim
k→∞

{
fk
(
z1

∂

∂z1
, . . .

)
g(P ; z)

∣∣∣∣
z=1

}1/k

57

Chapter 4 Mixed-integer polynomial optimization via the summation method

Here we consider the problem

max/min f(x1, . . . , xn)

subject to Ax ≤ b

x ∈ Rn1 × Zn2 ,

(4.1)

where A is a rational matrix and b is a rational vector, and where f is a polynomial
function of maximum total degree D with rational coefficients. We are interested in
general polynomial objective functions f without any convexity assumptions.

As we pointed out in the introduction (Theorem 1.7), optimizing degree-4 poly-
nomials over problems with two integer variables (n1 = 0, n2 = 2) is already a hard
problem. Thus, even when we fix the dimension, we cannot get a polynomial-time
algorithm for solving the optimization problem. The best we can hope for, even
when the number of both the continuous and the integer variables is fixed, is an
approximation result.

We present here the FPTAS obtained in De Loera et al. (2006a,b, 2008a), which
uses the “summation method” and short rational generating functions.

4.1 The summation method

The summation method for optimization is the idea to use of elementary relation

max{s1, . . . , sN} = lim
k→∞

k

√
sk1 + · · ·+ skN , (4.2)

which holds for any finite set S = {s1, . . . , sN} of non-negative real numbers. This
relation can be viewed as an approximation result for `k-norms. Now if P is a
polytope and f is an objective function non-negative on P ∩Zd, let x1, . . . ,xN denote
all the feasible integer solutions in P ∩Zd and collect their objective function values
si = f(xi) in a vector s ∈ QN . Then, comparing the unit balls of the `k-norm and
the `∞-norm (Figure 4.1), we get the relation

Lk := N−1/k‖s‖k ≤ ‖s‖∞ ≤ ‖s‖k =: Uk.

These estimates are independent of the function f . (Different estimates that make
use of the properties of f , and that are suitable also for the continuous case, can be
obtained from the Hölder inequality; see for instance Baldoni et al. (2010).)

Thus, for obtaining a good approximation of the maximum, it suffices to solve a
summation problem of the polynomial function h = fk on P ∩Zd for a value of k that
is large enough. Indeed, for k =

⌈
(1 + 1/ε) logN

⌉
, we obtain Uk − Lk ≤ εf(xmax).

On the other hand, this choice of k is polynomial in the input size (because 1/ε is
encoded in unary in the input, and logN is bounded by a polynomial in the binary
encoding size of the polytope P). Hence, when the dimension d is fixed, we can
expand the polynomial function fk as a list of monomials in polynomial time.

58

4.1 The summation method

k = 1 k = 2

Figure 4.1: Approximation properties of `k-norms

Below we show how to solve the summation problem for the pure integer case.
This lead to the FPTAS for the pure integer, non-negative case in section 4.2. Then
we show an extension to mixed-integer optimization by discretization in section 4.3,
i.e., the following result:

Theorem 4.1 (Fully polynomial-time approximation scheme). Let the dimension
d = d1 +d2 be fixed. There exists a fully polynomial time approximation scheme (FP-
TAS) for the maximization problem (4.1) for all polynomial functions f(x1, . . . , xd1 ,
z1, . . . , zd2) with rational coefficients that are non-negative on the feasible region.

Finally, in section 4.4, we study the mixed-integer case with a different notion
of approximation that is suitable for objective functions that can take negative val-
ues on the feasible region. The usual definition of an FPTAS uses the notion of
ε-approximation that is common when considering combinatorial optimization prob-
lems, where the approximation error is compared to the optimal solution value,∣∣f(xε, zε)− f(xmax, zmax)

∣∣ ≤ εf(xmax, zmax), (4.3)

where (xε, zε) denotes an approximate solution and (xmax, zmax) denotes a maximizer
of the objective function. In section 4.4, we now compare the approximation error
to the range of the objective function on the feasible region,∣∣f(xε, zε)− f(xmax, zmax)

∣∣ ≤ ε
∣∣f(xmax, zmax)− f(xmin, zmin)

∣∣, (4.4)

where additionally (xmin, zmin) denotes a minimizer of the objective function on the
feasible region. This notion of approximation was proposed by various authors (Bel-
lare and Rogaway, 1993, de Klerk et al., 2006, Vavasis, 1993). It enables us to study
objective functions that are not restricted to be non-negative on the feasible region.
Indeed we prove:

Theorem 4.2 (Fully polynomial-time weak-approximation scheme). Let the dimen-
sion d = d1 + d2 be fixed. Let f be an arbitrary polynomial function with rational
coefficients and maximum total degree D, and let P ⊂ Rd be a rational convex poly-
tope.

(a) In time polynomial in the input size and D, it is possible to decide whether f is
constant on P ∩

(
Rd1 × Zd2

)
.

59

Chapter 4 Mixed-integer polynomial optimization via the summation method

(b) In time polynomial in the input size, D, and 1
ε

it is possible to compute a solution
(xε, zε) ∈ P ∩

(
Rd1 × Zd2

)
with∣∣f(xε, zε)− f(xmax, zmax)

∣∣ ≤ ε
∣∣f(xmax, zmax)− f(xmin, zmin)

∣∣.
4.2 FPTAS for optimizing non-negative polynomials

over integer points of polytopes

Here we prove the following theorem (FPTAS) for the pure integer case.

Theorem 4.3 (FPTAS for maximizing non-negative polynomials over finite lattice
point sets). For all fixed integers k (dimension) and s (maximum number of binomials
in the denominator), there exists an algorithm with running time polynomial in the
encoding size of the problem and 1

ε
for the following problem.

Input: Let V ⊆ Zk be a finite set, given by a rational generating function in the
form

g(V ; x) =
∑
i∈I

γi
xci

(1− xdi1) . . . (1− xdisi)

where the the numbers si of binomials in the denominators are at most s. Further-
more, let two vectors vL, vU ∈ Zk be given such that V is contained in the box
{v : vL ≤ v ≤ vU }.

Let f ∈ Q[v1, . . . , vk] be a polynomial with rational coefficients that is non-negative
on V , given by a list of its monomials, whose coefficients are encoded in binary and
whose exponents are encoded in unary.

Finally, let ε ∈ Q.

Output: Compute a point vε ∈ V that satisfies

f(vε) ≥ (1− ε)f ∗ where f ∗ = max
v∈V

f(v).

Remark 4.4. A version of this result first appeared in De Loera et al. (2006b).
There the result was stated and proved only for sets V that consist of the lattice
points of a rational polytope; however, the same proof yields the result above.

The proof uses the summation method. To solve the summation problem, we use
the technique of short rational generating functions. We start with a simple, one-
dimensional example. Once more, we consider the generating function of the integer
points of the interval P = [0, 4],

g(P ; z) = z0 + z1 + z2 + z3 + z4=
1

1− z
− z5

1− z
.

60

4.2 FPTAS for optimizing non-negative polynomials over integer points of polytopes

We now apply the differential operator z d
dz

and obtain(
z

d

dz

)
g(P ; z) = 1z1 + 2z2 + 3z3 + 4z4=

1

(1− z)2
− −4z5 + 5z4

(1− z)2

Applying the same differential operator again, we obtain(
z

d

dz

)(
z

d

dz

)
g(P ; z) = 1z1 + 4z2 + 9z3 + 16z4

=
z + z2

(1− z)3
− 25z5 − 39z6 + 16z7

(1− z)3

We have thus evaluated the monomial function h(α) = α2 for α = 0, . . . , 4; the results
appear as the coefficients of the respective monomials. Substituting z = 1 yields the
desired sum (

z
d

dz

)(
z

d

dz

)
g(P ; z)

∣∣∣∣
z=1

= 1 + 4 + 9 + 16 = 30

The idea now is to evaluate this sum instead by computing the limit of the rational
function for z → 1,

4∑
α=0

α2 = lim
z→1

[
z + z2

(1− z)3
− 25z5 − 39z6 + 16z7

(1− z)3

]
;

again this evaluation problem can be solved using residue techniques.

Such differential operators can be constructed and efficiently applied in general.

Lemma 4.5 (Barvinok, 2006b). Let gP (z) be the rational generating function of the
lattice points of P . Let f be a polynomial in Z[x1, . . . , xd] of maximum total degree D.
We can compute, in time polynomial on D and the size of the input data, a rational
generating function gP,f (z) that represents

∑
α∈P∩Zd f(α)zα.

Proof (sketch). In general, we apply the differential operator

Df = f
(
z1

∂

∂z1

, . . . , zn
∂

∂zn

)
.

Consider first the case f(z) = zr. Consider the action of the differential operator
zr

∂
∂zr

in the rational generating function gP (z). On one hand, for the generating
function

zr
∂

∂zr
gP (z) =

∑
α∈P∩Zd

zr
∂

∂zr
zα =

∑
α∈P∩Zd

αrz
α.

On the other hand, by linearity of the operator, we have that in terms of rational
functions

zr
∂

∂zr
gP (z) =

∑
i∈I

εizr
∂

∂zr

zui

d∏
j=1

(1− zvij)

.

61

Chapter 4 Mixed-integer polynomial optimization via the summation method

Thus it is enough to prove that the summands of the expression above can be written
in terms of rational functions computable in polynomial time. The quotient rule for
derivatives says that

∂

∂zr

zui

d∏
j=1

(1− zvij)
=

(∂z
ui

∂zr
)
∏d

j=1(1− zvij)− zui(∂
∂zr

∏d
j=1(1− zvij))∏d

j=1(1− zvij)2
.

We can expand the numerator as a sum of no more than 2d monomials. This is a
constant number because d, the number of variables, is assumed to be a constant.

For the case of f being any monomial, repeat this construction, remembering to
cancel powers in the denominator after the repeated application of the quotient rule
(this is important). The general case of a polynomial f of many monomial terms
follows by linearity.

Now we present the algorithm to obtain bounds Uk, Lk that reach the optimum.
Step 1 of preprocessing is necessary because we rely on the elementary fact that,
for a collection S = {s1, . . . , sr} of non-negative real numbers, maximum{si|si ∈ S}
equals limk→∞

k

√∑r
j=1 s

k
j .

Algorithm

Input: A rational convex polytope P ⊂ Rd, a polynomial objective f ∈ Z[x1, . . . , xd]
of maximum total degree D.

Output: An increasing sequence of lower bounds Lk, and a decreasing sequence of
upper bounds Uk reaching the maximal function value f ∗ of f over all lattice points
of P .

Step 1. If f is known to be non-negative in all points of P , then go directly to
Step 2. Else, solving 2d linear programs over P , we find lower and upper integer
bounds for each of the variables x1, . . . , xd. Let M be the maximum of the absolute
values of these 2d numbers. Thus |xi| ≤ M for all i. Let C be the maximum of the
absolute values of all coefficients, and r be the number of monomials of f(x). Then

L := −rCMD ≤ f(x) ≤ rCMD =: U,

as we can bound the absolute value of each monomial of f(x) by CMD. Replace f
by f̄(x) = f(x) − L ≤ U − L, a non-negative polynomial over P . Go to Steps 2, 3,
etc. and return the optimal value of f̄ . Trivially, if we find the optimal value of f̄
over P we can extract the optimal value for f .

Step 2. Via Barvinok’s algorithm (see Barvinok (1994b, 2006b), Barvinok and Pom-
mersheim (1999a)), compute a short rational function expression for the generating
function gP (z) =

∑
α∈P∩Zd z

α. From gP (z) compute the number |P ∩ Zd| = gP (1) of
lattice points in P in polynomial time.

62

4.2 FPTAS for optimizing non-negative polynomials over integer points of polytopes

Step 3. From the rational function representation gP (z) of the generating function∑
α∈P∩Zd

zα compute the rational function representation of gP,fk(z) of
∑

α∈P∩Zd f
k(α)zα

in polynomial time by application of Lemma 4.5. We define

Lk := k

√
gP,fk(1)/gP,f0(1) and Uk := k

√
gP,fk(1).

When bUkc − dLke < 1 stop and return dLke = bUkc as the optimal value.

Lemma 4.6. The algorithm is correct.

Proof. Using the fact that the arithmetic mean of a finite set of nonnegative values
is at most as big as the maximum value, which in turn is at most as big as the sum
of all values, we obtain the sequences of lower and upper bounds, Lk and Uk, for the
maximum:

Lk =
k

√√√√ ∑
α∈P∩Zd

f(α)k

|P ∩ Zd|
≤ max{f(α) : α ∈ P ∩ Zd} ≤ k

√ ∑
α∈P∩Zd

f(α)k = Uk.

Note that as s→∞, Lk and Uk approach this maximum value monotonously (from
below and above, respectively). Trivially, if the difference between (rounded) up-
per and lower bounds becomes strictly less than 1, we have determined the value
max{f(x) : x ∈ P ∩ Zd} = dLke. Thus the algorithm terminates with the correct
answer.

The main theorem will follow from the next lemma:

Lemma 4.7. Let f be a polynomial with integer coefficients and maximum total
degree D. When the dimension d is fixed,

1. the bounds Lk, Uk can be computed in time polynomial in k, the input size of
P and f , and the total degree D. The bounds satisfy the following inequality:

Uk − Lk ≤ f ∗ ·
(

k
√
|P ∩ Zd| − 1

)
.

2. In addition, when f is non-negative over P (i.e. f(x) ≥ 0 for all x ∈ P), for
k = (1+1/ε) log(|P ∩ Zd|), Lk is a (1−ε)-approximation to the optimal value f ∗

and it can be computed in time polynomial in the input size, the total degree D,
and 1/ε. Similarly, Uk gives a (1 + ε)-approximation to f ∗. Moreover, with the
same complexity, one can also find a feasible lattice point that approximates an
optimal solution with similar quality.

63

Chapter 4 Mixed-integer polynomial optimization via the summation method

Proof. Part (i). From Lemma 4.5 on fixed dimension d, we can compute gP,f =∑
α∈P∩Zd f(α)zα as a rational function in time polynomial in D, the total degree

of f , and the input size of P . Thus, because fk has total degree of Dk and the
encoding length for the coefficients of fk is bounded by k log(kC) (with C the largest
coefficient in f), we can also compute gP,fk =

∑
α∈P∩Zd f

k(α)zα in time polynomial
in k, the total degree D, and the input size of P . Note that using residue techniques
Barvinok (2006b), we can evaluate gP,fk(1) in polynomial time. Finally observe

Uk − Lk = k

√ ∑
α∈P∩Zd

fk(α)− k

√∑
α∈P∩Zd f

k(α)

|P ∩ Zd|
= k

√∑
α∈P∩Zd f

k(α)

|P ∩ Zd|

(
k
√
|P ∩ Zd| − 1

)
= Lk

(
k
√
|P ∩ Zd| − 1

)
≤ f ∗

(
k
√
|P ∩ Zd| − 1

)
.

Part (ii). Note that if
(

k
√
|P ∩ Zd| − 1

)
≤ ε then Lk is indeed a (1−ε)-approximation

because

f ∗ ≤ Uk = Lk + (Uk − Lk) ≤ Lk + f ∗
(

k
√
|P ∩ Zd| − 1

)
≤ Lk + f ∗ε.

Observe that φ(ε) := (1 + 1/ε)/(1/ log(1 + ε)) is an increasing function for ε < 1
and limε→0 φ(ε) = 1, thus φ(ε) ≥ 1 for 0 < ε ≤ 1. Hence, for all k ≥ log(|P ∩ Zd|) +

log(|P ∩ Zd|)/ε ≥ log(|P ∩ Zd|)/ log(1 + ε), we have indeed
(

k
√
|P ∩ Zd| − 1

)
≤ ε.

Finally, from Lemma 4.5, the calculation of Lk for k = log(|P ∩ Zd|)+log(|P ∩ Zd|)/ε
would require a number of steps polynomial in the input size and 1/ε. A very similar
argument can be written for Uk but we omit it here.

To complete the proof of part (ii) it remains to show that not only we approximate
the optimal value f ∗ but we can also efficiently find a lattice point α with f(α) giving
that quality approximation of f ∗. Let k = (1 + 1/ε) log(|P ∩ Zd|), thus, by the above
discussion, Lk is an (1−ε)-approximation to f ∗. Let Q0 := [−M,M]d denote the box
computed in Step 1 of the algorithm such that P ⊆ Q0. By bisecting Q0, we obtain
two boxes Q′1 and Q′′1. By applying the algorithm separately to the polyhedra P ∩Q′1
and P ∩ Q′′1, we compute lower bounds L′k and L′′k for the optimization problems
restricted to Q′1 and Q′′1, respectively. Because Lkk is the arithmetic mean of fk(α)
for α ∈ P ∩ Zd, clearly

min{L′k, L′′k} ≤ Lk ≤ max{L′k, L′′k}.

Without loss of generality, let L′k ≥ L′′k. We now apply the bisection procedure
iteratively on Q′k. After d logM bisection steps, we obtain a box Q′k that contains a
single lattice point α ∈ P ∩Q′k ∩Zd, which has an objective value f(α) = L′k ≥ Lk ≥
(1− ε)f ∗.

64

4.2 FPTAS for optimizing non-negative polynomials over integer points of polytopes

We remark that if we need to apply the construction of Step 1 of the algorithm be-
cause f takes negative values on P , then we can only obtain an (1−ε)-approximation
(and (1 + ε)-approximation, respectively) for the modified function f̄ in polynomial
time, but not the original function f . We also emphasize that, although our algorithm
requires the computation of

∑
α∈P f

q(α) for different powers of f , these numbers are
obtained without explicitly listing all lattice points (a hard task), nor we assume any
knowledge of the individual values f(α). We can access the power means

∑
α∈P f

q(α)
indirectly via rational functions. Here are two small examples:

Example 1, monomial optimization over a quadrilateral: The problem we con-
sider is that of maximizing the value of the monomial x3y over the lattice points of
the quadrilateral

{(x, y)|3991 ≤ 3996x− 4 y ≤ 3993, 1/2 ≤ x ≤ 5/2}.

It contains only 2 lattice points. The sum of rational functions encoding the lattice
points is

x2y1000

(1− (xy999)−1) (1− y−1)
+

xy

(1− xy999) (1− y−1)

+
xy

(1− xy999) (1− y)
+

x2y1000

(1− (xy999)−1) (1− y)
.

In the first iteration L1 = 4000.50 while U1 = 8001. After thirty iterations, we see
L30 = 7817.279750 while U30 = 8000, the true optimal value.

Example 2, nvs04 from MINLPLIB: A somewhat more complicated example, from
a well-known library of test examples (see http://www.gamsworld.org/minlp/), is
the problem given by

min 100

(
1

2
+ i2 −

(
3

5
+ i1

)2
)2

+

(
2

5
− i1

)2

s. t. i1, i2 ∈ [0, 200] ∩ Z.

(4.5)

Its optimal solution as given in MINLPLIB is i1 = 1, i2 = 2 with an objective value
of 0.72. Clearly, to apply our algorithm from page 62 literally, the objective function
needs to be multiplied by a factor of 100 to obtain an integer valued polynomial.

Using the bounds on i1 and i2 we obtain an upper bound of 165·109 for the objective
function, which allows us to convert the problem into an equivalent maximization
problem, where all feasible points have a non-negative objective value. The new

65

http://www.gamsworld.org/minlp/

Chapter 4 Mixed-integer polynomial optimization via the summation method

optimal objective value is 164999999999.28. Expanding the new objective function
and translating it into a differential operator yields

4124999999947

25
Id− 28z2

∂

∂z2

+
172

5
z1

∂

∂z1

− 117

(
z1

∂

∂z1

)(2)

− 100

(
z2

∂

∂z2

)(2)

+ 240

(
z2

∂

∂z2

)(
z1

∂

∂z1

)
+ 200

(
z2

∂

∂z2

)(
z1

∂

∂z1

)(2)

− 240

(
z1

∂

∂z1

)(3)

− 100

(
z1

∂

∂z1

)(4)

.

The short generating function can be written as g(z1, z2) =
(

1
1−z1 −

z2011

1−z1

)(
1

1−z2 −
z2012

1−z2

)
.

In this example, the number of lattice points is |P ∩ Z2| = 40401. The first
bounds are L1 = 139463892042.292155534, U1 = 28032242300500.723262442. Af-
ter 30 iterations the bounds become L30 = 164999998845.993553019 and U30 =
165000000475.892451381.

4.3 Extension to mixed-integer optimization via
discretization

Our main approach is to use grid refinement in order to approximate the mixed-
integer optimal value via auxiliary pure integer problems. One of the difficulties on
constructing approximations is the fact that not every sequence of grids whose widths
converge to zero leads to a convergent sequence of optimal solutions of grid optimiza-
tion problems. This difficulty is addressed in subsection 4.3.1. In subsection 4.3.2
we develop techniques for bounding differences of polynomial function values. Sec-
tion 4.3.3 contains the proof of the main theorem.

4.3.1 Grid approximation results

An important step in the development of an FPTAS for the mixed-integer optimiza-
tion problem is the reduction of the mixed-integer problem (??) to an auxiliary
optimization problem over a lattice 1

m
Zd1 × Zd2 . To this end, we consider the grid

problem with grid size m,

max f(x1, . . . , xd1 , z1, . . . , zd2)

s.t. Ax +Bz ≤ b

xi ∈ 1
m

Z for i = 1, . . . , d1,

zi ∈ Z for i = 1, . . . , d2.

(4.6)

We can solve this problem approximately using the integer FPTAS (Lemma 4.7):

Corollary 4.8. For fixed dimension d = d1 + d2 there exists an algorithm with
running time polynomial in logm, the encoding length of f and of P , the maximum

66

4.3 Extension to mixed-integer optimization via discretization

total degree D of f , and 1
ε

for computing a feasible solution (xmε , z
m
ε) ∈ P ∩

(
1
m

Zd1 ×
Zd2
)

to the grid problem (4.6) with an objective function f that is non-negative on
the feasible region, with

f(xmε , z
m
ε) ≥ (1− ε)f(xm, zm), (4.7)

where (xm, zm) ∈ P ∩
(

1
m

Zd1 × Zd2
)

is an optimal solution to (4.6).

Proof. We apply Lemma 4.7 to the pure integer optimization problem:

max f̃(x̃, z)

s.t. Ax̃ +mBz ≤ mb

x̃i ∈ Z for i = 1, . . . , d1,

zi ∈ Z for i = 1, . . . , d2,

(4.8)

where f̃(x̃, z) := mDf(1
m

x̃, z) is a polynomial function with integer coefficients.

Clearly the binary encoding length of the coefficients of f̃ increases by at most
dD logme, compared to the coefficients of f . Likewise, the encoding length of the
coefficients of mB and mb increases by at most dlogme. By Theorem 1.1 of De Lo-
era et al. (2006b), there exists an algorithm with running time polynomial in the
encoding length of f̃ and of Ax + mBz ≤ mb, the maximum total degree D,
and 1

ε
for computing a feasible solution (xmε , z

m
ε) ∈ P ∩

(
1
m

Zd1 × Zd2
)

such that

f̃(xmε , z
m
ε) ≥ (1− ε)f̃(xm, zm), which implies the estimate (4.7).

One might be tempted to think that for large-enough choice of m, we immediately
obtain an approximation to the mixed-integer optimum with arbitrary precision.
However, this is not true, as the following example demonstrates.

Example 4.9. Consider the mixed-integer optimization problem

max 2z − x
s.t. z ≤ 2x

z ≤ 2(1− x)

x ∈ R≥0, z ∈ {0, 1},

(4.9)

whose feasible region consists of the point (1
2
, 1) and the segment { (x, 0) : x ∈ [0, 1]}.

The unique optimal solution to (4.9) is x = 1
2
, z = 1. Now consider the sequence

of grid approximations of (4.9) where x ∈ 1
m

Z≥0. For even m, the unique optimal
solution to the grid approximation is x = 1

2
, z = 1. However, for odd m, the unique

optimal solution is x = 0, z = 0. Thus the full sequence of the optimal solutions to
the grid approximations does not converge since it has two limit points; see Figure 4.2.

67

Chapter 4 Mixed-integer polynomial optimization via the summation method

Z

1

11
2

R

f(1
2
, 1) = 1

1

1
2

R1

Z

f(0, 0) = 0

Figure 4.2: A sequence of optimal solutions to grid problems with two limit points,
for even m and for odd m

Even though taking the limit does not work, taking the upper limit does. More
strongly, we can prove that it is possible to construct, in polynomial time, a subse-
quence of finer and finer grids that contain a lattice point (bx∗eδ, z∗) that is arbitrar-
ily close to the mixed-integer optimum (x∗, z∗). This is the central statement of this
section and a basic building block of the approximation result.

Theorem 4.10 (Grid Approximation). Let d1 be fixed. Let P = { (x, z) ∈ Rd1+d2 :
Ax + Bz ≤ b }, where A ∈ Zp×d1, B ∈ Zp×d2. Let M ∈ R be given such that
P ⊆ { (x, z) ∈ Rd1+d2 : |xi| ≤ M for i = 1, . . . , d1 }. There exists a polynomial-time
algorithm to compute a number ∆ such that for every (x∗, z∗) ∈ P ∩ (Rd1 ×Zd2) and
δ > 0 the following property holds:

Every lattice 1
m

Zd1 for m = k∆ and k ≥ 2
δ
d1M contains a lattice point

bx∗eδ such that (bx∗eδ, z∗) ∈ P ∩
(

1
m

Zd1 × Zd2
)

and
∥∥bx∗eδ − x∗

∥∥
∞ ≤ δ.

The geometry of Theorem 4.10 is illustrated in Figure 4.3. The notation bx∗eδ has
been chosen to suggest that the coordinates of x∗ have been “rounded” to obtain
a nearby lattice point. The rounding method is provided by the next two lemmas;
Theorem 4.10 follows directly from them.

Lemma 4.11 (Integral Scaling Lemma). Let P = { (x, z) ∈ Rd1+d2 : Ax+Bz ≤ b },
where A ∈ Zp×d1, B ∈ Zp×d2. For fixed d1, there exists a polynomial time algorithm
to compute a number ∆ ∈ Z>0 such that for every z ∈ Zd2 the polytope

∆Pz =
{

∆x : (x, z) ∈ P
}

is integral, i.e., all vertices have integer coordinates. In particular, the number ∆ has
an encoding length that is bounded by a polynomial in the encoding length of P .

68

4.3 Extension to mixed-integer optimization via discretization

δ

z ∈ Z

3

2

1

x ∈ R

(bx∗eδ, z∗)

(x∗, z∗)

Figure 4.3: The principle of grid approximation. Since we can refine the grid only
in the direction of the continuous variables, we need to construct an
approximating grid point (x, z∗) in the same integral slice as the target
point (x∗, z∗).

Proof. Because the dimension d1 is fixed, there exist only polynomially many sim-
plex bases of the inequality system Ax ≤ b − Bz, and they can be enumerated
in polynomial time. The determinant of each simplex basis can be computed in
polynomial time. Then ∆ can be chosen as the least common multiple of all these
determinants.

Lemma 4.12. Let Q ⊂ Rd be an integral polytope. Let M ∈ R be such that Q ⊆
{x ∈ Rd : |xi| ≤ M for i = 1, . . . , d }. Let x∗ ∈ Q and let δ > 0. Then every lattice
1
k
Zd for k ≥ 2

δ
dM contains a lattice point x ∈ Q ∩ 1

k
Zd with ‖x− x∗‖∞ ≤ δ.

Proof. By Carathéodory’s Theorem, there exist d + 1 vertices x0, . . . ,xd ∈ Zd of Q
and convex multipliers λ0, . . . , λd such that x∗ =

∑d
i=0 λix

i. Let λ′i := 1
k
bkλic ≥ 0

for i = 1, . . . , d and λ′0 := 1 −
∑d

i=1 λ
′
i ≥ 0. Moreover, we conclude λi − λ′i ≤ 1

k
for

i = 1, . . . , d and λ′0−λ0 =
∑d

i=1(λi−λ′i) ≤ d 1
k
. Then x :=

∑d
i=0 λ

′
ix
i ∈ Q∩ 1

k
Zd, and

we have

‖x− x∗‖∞ ≤
d∑
i=0

|λ′i − λi|‖xi‖∞ ≤ 2d
1

k
M ≤ δ,

which proves the lemma.

4.3.2 Bounding techniques

Using the results of subsection 4.3.1 we are now able to approximate the mixed-
integer optimal point by a point of a suitably fine lattice. The question arises how

69

Chapter 4 Mixed-integer polynomial optimization via the summation method

we can use the geometric distance of these two points to estimate the difference
in objective function values. We prove Lemma 4.13 that provides us with a local
Lipschitz constant for the polynomial to be maximized.

Lemma 4.13 (Local Lipschitz constant). Let f be a polynomial in d variables with
maximum total degree D. Let C denote the largest absolute value of a coefficient of f .
Then there exists a Lipschitz constant L such that |f(x) − f(y)| ≤ L‖x − y‖∞ for
all |xi|, |yi| ≤M . The constant L is O(Dd+1CMD).

Proof. Let f(x) =
∑

α∈D cαxα, where D ⊆ Zd
≥0 is the set of exponent vectors of

monomials appearing in f . Let r = |D| be the number of monomials of f . Then we
have

|f(x)− f(y)| ≤
∑
α 6=0

|cα| |xα − yα|.

We estimate all summands separately. Let α 6= 0 be an exponent vector with
n :=

∑d
i=1 αi ≤ D. Let

α = α0 ≥ α1 ≥ · · · ≥ αn = 0

be a decreasing chain of exponent vectors with αi−1 −αi = eji for i = 1, . . . , n. Let
βββi := α−αi for i = 0, . . . , n. Then xα−yα can be expressed as the “telescope sum”

xα − yα = xα0

yβββ0

− xα1

yβββ1

+ xα1

yβββ1

− xα2

yβββ2

+− · · · − xαnyβββn

=
n∑
i=1

(
xαi−1

yβββi−1

− xαiyβββi
)

=
n∑
i=1

(
(xji − yji)xαiyβββi−1

)
.

Since
∣∣xαiyβββi−1∣∣ ≤Mn−1 and n ≤ D, we obtain

|xα − yα| ≤ D · ‖x− y‖∞ ·Mn−1,

thus

|f(x)− f(y)| ≤ CrDMD−1‖x− y‖∞.

Let L := CrDMD−1. Now, since r = O(Dd), we have L = O(Dd+1CMD).

Moreover, in order to obtain an FPTAS, we need to put differences of function
values in relation to the maximum function value. To do this, we need to deal with
the special case of polynomials that are constant on the feasible region; here trivially
every feasible solution is optimal. For non-constant polynomials, we can prove a lower
bound on the maximum function value. The technique is to bound the difference of

70

4.3 Extension to mixed-integer optimization via discretization

x1

x2

x0

Figure 4.4: The geometry of Lemma 4.15. For a polynomial with maximum total
degree of 2, we construct a refinement 1

k
Zd (small circles) of the standard

lattice (large circles) such that P ∩ 1
k
Zd contains an affine image of the

set {0, 1, 2}d (large dots).

the minimum and the maximum function value on the mixed-integer set from below;
if the polynomial is non-constant, this implies, for a non-negative polynomial, a lower
bound on the maximum function value. We will need a simple fact about the roots
of multivariate polynomials.

Lemma 4.14. Let f ∈ Q[x1, . . . , xd] be a polynomial and let D be the largest power
of any variable that appears in f . Then f = 0 if and only if f vanishes on the set
{0, . . . , D}d.

Proof. This is a simple consequence of the Fundamental Theorem of Algebra. See,
for instance, (Cox et al., 1992, Chapter 1, §1, Exercise 6 b).

Lemma 4.15. Let f ∈ Q[x1, . . . , xd] be a polynomial with maximum total degree D.
Let Q ⊂ Rd be an integral polytope of dimension d′ ≤ d. Let k ≥ Dd′. Then f is
constant on Q if and only if f is constant on Q ∩ 1

k
Zd.

Proof. Let x0 ∈ Q∩Zd be an arbitrary vertex of Q. There exist vertices x1, . . . ,xd
′ ∈

Q∩Zd such that the vectors x1−x0, . . . ,xd
′ −x0 ∈ Zd are linearly independent. By

convexity, Q contains the parallelepiped

S :=
{

x0 +
∑d′

i=1 λi(x
i − x0) : λi ∈ [0, 1

d′
] for i = 1, . . . , d′

}
.

We consider the set

Sk = 1
k
Zd ∩ S ⊇

{
x0 +

∑d′

i=1
ni
k

(xi − x0) : ni ∈ {0, 1, . . . , D} for i = 1, . . . , d′
}

;

71

Chapter 4 Mixed-integer polynomial optimization via the summation method

see Figure 4.4. Now if there exists a c ∈ R with f(x) = c for all x ∈ Q ∩ 1
k
Zd, then

all the points in Sk are roots of the polynomial f − c, which has only maximum total
degree D. By Lemma 4.14 (after an affine transformation), f − c is zero on the affine
hull of Sk; hence f is constant on the polytope Q.

Theorem 4.16. Let f ∈ Z[x1, . . . , xd1 , z1, . . . , zd2]. Let P be a rational convex poly-
tope, and let ∆ be the number from Lemma 4.11. Let m = k∆ with k ≥ Dd1, k ∈ Z.
Then f is constant on the feasible region P ∩

(
Rd1 ×Zd2

)
if and only if f is constant

on P ∩
(

1
m

Zd1 × Zd2
)
. If f is not constant, then∣∣f(xmax, zmax)− f(xmin, zmin)

∣∣ ≥ m−D, (4.10)

where (xmax, zmax) is an optimal solution to the maximization problem over the feasi-
ble region P ∩

(
Rd1×Zd2

)
and (xmin, zmin) is an optimal solution to the minimization

problem.

Proof. Let f be constant on P ∩
(

1
m

Zd1 × Zd2
)
. For fixed integer part z ∈ Zd2 , we

consider the polytope ∆Pz =
{

∆x : (x, z) ∈ P
}

, which is a slice of P scaled to
become an integral polytope. By applying Lemma 4.15 with k = (D + 1)d on every
polytope ∆Pz, we obtain that f is constant on every slice Pz. Because f is also
constant on the set P ∩

(
1
m

Zd1 × Zd2
)
, which contains a point of every non-empty

slice Pz, it follows that f is constant on P .
If f is not constant, there exist (x1, z1), (x2, z2) ∈ P∩

(
1
m

Zd1×Zd2
)

with f(x1, z1) 6=
f(x2, z2). By the integrality of all coefficients of f , we obtain the estimate

|f(x1, z1)− f(x2, z2)| ≥ m−D.

Because (x1, z1), (x2, z2) are both feasible solutions to the maximization problem
and the minimization problem, this implies (4.10).

4.3.3 Proof of Theorem 4.1

Now we are in the position to prove the main result.

Proof of Theorem 4.1. Part (a). Let (x∗, z∗) denote an optimal solution to the
mixed-integer problem.Let ε > 0. We show that, in time polynomial in the in-
put length, the maximum total degree, and 1

ε
, we can compute a point (x, z) that

satisfies the constraints such that

|f(x, z)− f(x∗, z∗)| ≤ εf(x∗, z∗). (4.11)

We prove this by establishing several estimates, which are illustrated in Figure 4.5.
First we note that we can restrict ourselves to the case of polynomials with integer

coefficients, simply by multiplying f with the least common multiple of all denomi-
nators of the coefficients. We next establish a lower bound on f(x∗, z∗). To this end,

72

4.3 Extension to mixed-integer optimization via discretization

≤ Lδ ≤ ε
2
f(x∗, z∗)

≤ ε
2
f(xm, zm) ≤ ε

2
f(x∗, z∗)

f(x∗, z∗)

f(xm, zm)

Optimal mixed-integer solution

Optimal grid solution

Rounded mixed-integer solution f(bx∗eδ, z∗)

f(xmε/2, z
m
ε/2)Approximative grid solution

Figure 4.5: Estimates in the proof of Theorem 4.1 (a)

let ∆ be the integer from Lemma 4.11, which can be computed in polynomial time.
By Theorem 4.16 with m = Dd1∆, either f is constant on the feasible region, or

f(x∗, z∗) ≥ (Dd1∆)−D, (4.12)

where D is the maximum total degree of f . Now let

δ :=
ε

2(Dd1∆)DL(C,D,M)
(4.13)

and let us choose the grid size

m := ∆

⌈
4

ε
(Dd1∆)DL(C,D,M)d1M

⌉
, (4.14)

where L(C,D,M) is the Lipschitz constant from Lemma 4.13. Then we have m ≥
∆2
δ
d1M , so by Theorem 4.10, there is a point (bx∗eδ, z∗) ∈ P ∩

(
1
m

Zd1 × Zd2
)

with∥∥bx∗eδ−x∗
∥∥
∞ ≤ δ. Let (xm, zm) denote an optimal solution to the grid problem (4.6).

Because (bx∗eδ, z∗) is a feasible solution to the grid problem (4.6), we have

f(bx∗eδ, z∗) ≤ f(xm, zm) ≤ f(x∗, z∗). (4.15)

Now we can estimate∣∣f(x∗, z∗)− f(xm, zm)
∣∣ ≤ ∣∣f(x∗, z∗)− f(bx∗eδ, z∗)

∣∣
≤ L(C,D,M)

∥∥x∗ − bx∗eδ∥∥∞
≤ L(C,D,M) δ

=
ε

2
(Dd1∆)−D

≤ ε

2
f(x∗, z∗), (4.16)

where the last estimate is given by (4.12) in the case that f is not constant on the
feasible region. On the other hand, if f is constant, the estimate (4.16) holds trivially.

73

Chapter 4 Mixed-integer polynomial optimization via the summation method

By Corollary 4.8 we can compute a point (xmε/2, z
m
ε/2) ∈ P ∩

(
1
m

Zd1×Zd2
)

such that

(1− ε
2
)f(xm, zm) ≤ f(xmε/2, z

m
ε/2) ≤ f(xm, zm) (4.17)

in time polynomial in logm, the encoding length of f and P , the maximum total
degree D, and 1/ε. Here logm is bounded by a polynomial in logM , D and logC, so
we can compute (xmε/2, z

m
ε/2) in time polynomial in the input size, the maximum total

degree D, and 1/ε. Now, using (4.17) and (4.16), we can estimate

f(x∗, z∗)− f(xmε/2, z
m
ε/2)

≤ f(x∗, z∗)− (1− ε
2
)f(xm, zm)

= ε
2
f(x∗, z∗) + (1− ε

2
)
(
f(x∗, z∗)− f(xm, zm)

)
≤ ε

2
f(x∗, z∗) + ε

2
f(x∗, z∗)

= εf(x∗, z∗).

Hence f(xmε/2, z
m
ε/2) ≥ (1− ε)f(x∗, z∗).

4.4 Extension to polynomials of arbitrary range

In this section we drop the requirement of the polynomial being positive over the
feasible region. We will show an approximation result like the one in de Klerk et al.
(2006), i.e., we compute a solution (xε, zε) such that∣∣f(xε, zε)− f(xmax, zmax)

∣∣ ≤ ε
∣∣f(xmax, zmax)− f(xmin, zmin)

∣∣, (4.18)

where (xmax, zmax) is an optimal solution to the maximization problem over the fea-
sible region and (xmin, zmin) is an optimal solution to the minimization problem. Our
algorithm has a running time that is polynomial in the input size, the maximum
total degree of f , and 1

ε
. This means that while the result of de Klerk et al. (2006)

was a weak version of a PTAS (for fixed degree), our result is a weak version of an
FPTAS (for fixed dimension).

The approximation algorithms for the integer case (Lemma 4.7) and the mixed-
integer case (Theorem 4.1) only work for polynomial objective functions that are non-
negative on the feasible region. In order to apply them to an arbitrary polynomial
objective function f , we need to add a constant term to f that is large enough. As
proposed in De Loera et al. (2006b), we can use linear programming techniques to
obtain a bound M on the variables and then estimate

f(x) ≥ −rCMD =: L0,

where C is the largest absolute value of a coefficient, r is the number of monomials
of f , and D is the maximum total degree. However, the range

∣∣f(xmax, zmax) −

74

4.4 Extension to polynomials of arbitrary range

f(xmin, zmin)
∣∣ can be exponentially small compared to L0, so in order to obtain an

approximation (xε, zε) satisfying (4.18), we would need an (1− ε′)-approximation to
the problem of maximizing g(x, z) := f(x, z)−L0 with an exponentially small value
of ε′.

To address this difficulty, we will first apply an algorithm which will compute an
approximation [Li, Ui] of the range [f(xmin, zmin), f(xmax, zmax)] with constant quality.
To this end, we first prove a simple corollary of Theorem 4.1.

Corollary 4.17 (Computation of upper bounds for mixed-integer problems). Let
the dimension d = d1 + d2 be fixed. Let P ⊆ Rd be a rational convex polytope. Let
f ∈ Z[x1, . . . , xd1 , z1, . . . , zd2] be a polynomial function with integer coefficientsand
maximum total degree D that is non-negative on P ∩

(
Rd1 × Zd2

)
. Let δ > 0. There

exists an algorithm with running time polynomial in the input size, D, and 1
δ

for
computing an upper bound u such that

f(xmax, zmax) ≤ u ≤ (1 + δ)f(xmax, zmax), (4.19)

where (xmax, zmax) is an optimal solution to the maximization problem of f over
P ∩

(
Rd1 × Zd2

)
.

Proof. Let ε = δ
1+δ

. By Theorem 4.1, we can, in time polynomial in the input size,

D, and 1
ε

= 1 + 1
δ
, compute a solution (xε, zε) with∣∣f(xmax, zmax)− f(xε, zε)

∣∣ ≤ εf(xmax, zmax). (4.20)

Let u := 1
1−εf(xε, zε) = (1 + δ)f(xε, zε). Then

f(xmax, zmax) ≤ 1

1− ε
f(xε, zε) = u (4.21)

and

(1 + δ)f(xmax, zmax) ≥ (1 + δ)f(xε, zε)

= (1 + δ)(1− ε)u

= (1 + δ)

(
1− δ

1 + δ

)
u = u. (4.22)

This proves the estimate (4.19).

Algorithm 4.18 (Range approximation).

Input: Mixed-integer polynomial optimization problem (??), a number 0 < δ < 1.
Output: Sequences {Li}, {Ui} of lower and upper bounds of f over the feasible region
P ∩

(
Rd1 × Zd2

)
such that

Li ≤ f(xmin, zmin) ≤ f(xmax, zmax) ≤ Ui (4.23)

75

Chapter 4 Mixed-integer polynomial optimization via the summation method

and

lim
i→∞
|Ui − Li| = c

(
f(xmax, zmax)− f(xmin, zmin)

)
, (4.24)

where c depends only on the choice of δ.

1. By solving 2d linear programs over P , we find lower and upper integer bounds
for each of the variables x1, . . . , xd1 , z1, . . . , zd2 . Let M be the maximum of the
absolute values of these 2d numbers. Thus |xi|, |zi| ≤ M for all i. Let C be
the maximum of the absolute values of all coefficients, and r be the number of
monomials of f(x). Then

L0 := −rCMD ≤ f(x, z) ≤ rCMD =: U0,

as we can bound the absolute value of each monomial of f(x) by CMD.

2. Let i := 0.

3. Using the algorithm of Corollary 4.17, compute an upper bound u for the
problem

max g(x, z) := f(x, z)− Li
s.t. (x, z) ∈ P ∩

(
Rd1 × Zd2

)
that gives a (1 + δ)-approximation to the optimal value. Let Ui+1 := Li + u.

4. Likewise, compute an upper bound u for the problem

max h(x, z) := Ui − f(x, z)

s.t. (x, z) ∈ P ∩
(
Rd1 × Zd2

)
that gives a (1 + δ)-approximation to the optimal value. Let Li+1 := Ui − u.

5. i := i+ 1.

6. Go to 3.

Lemma 4.19. Algorithm 4.18 is correct. For fixed 0 < δ < 1, it computes the bounds
Ln, Un satisfying (4.23) and (4.24) in time polynomial in the input size and n.

Proof. We have

Ui − Li+1 ≤ (1 + δ)
(
Ui − f(xmin, zmin)

)
(4.25)

and

Ui+1 − Li ≤ (1 + δ)
(
f(xmax, zmax)− Li

)
. (4.26)

76

4.4 Extension to polynomials of arbitrary range

This implies

Ui+1 − Li+1 ≤ δ(Ui − Li) + (1 + δ)
(
f(xmax, zmax)− f(xmin, zmin)

)
.

Therefore

Un − Ln ≤ δn(U0 − L0) + (1 + δ)

(n−2∑
i=0

δi
)(
f(xmax, zmax)− f(xmin, zmin)

)
= δn(U0 − L0) + (1 + δ)

1− δn−1

1− δ
(
f(xmax, zmax)− f(xmin, zmin)

)
→ 1 + δ

1− δ
(
f(xmax, zmax)− f(xmin, zmin)

)
(n→∞).

The bound on the running time requires a careful analysis. Because in each step
the result u (a rational number) of the bounding procedure (Corollary 4.17) becomes
part of the input in the next iteration, the encoding length of the input could grow
exponentially after only polynomially many steps. However, we will show that the
encoding length only grows very slowly.

First we need to remark that the auxiliary objective functions g and h have integer
coefficients except for the constant term, which may be rational. It turns out that
the estimates in the proof of Theorem 4.1 (in particular, the local Lipschitz constant
L and the lower bound on the optimal value) are independent from the constant
term of the objective function. Therefore, the same approximating grid 1

m
Zd1 × Zd2

can be chosen in all iterations of Algorithm 4.18; the number m only depends on
δ, the polytope P , the maximum total degree D, and the coefficients of f with the
exception of the constant term.

The construction in the proof of Corollary 4.17 obtains the upper bound u by
multiplying the approximation f(xε, zε) by (1 + δ). Therefore we have

Ui+1 = Li + u

= Li + (1 + δ)
(
f(xε, zε)− Li

)
= −δLi + (1 + δ)f(xε, zε). (4.27)

Because the solution (xε, zε) lies in the grid 1
m

Zd1×Zd2 , the value f(xε, zε) is an integer
multiple of m−D. This implies that, because L0 ≤ f(xε, zε) ≤ U0, the encoding
length of the rational number f(xε, zε) is bounded by a polynomial in the input size
of f and P . Therefore the encoding length Ui+1 (and likewise Li+1) only increases by
an additive term that is bounded by a polynomial in the input size of f and P .

We are now in the position to prove Theorem 4.2.

Proof of Theorem 4.2. Clearly we can restrict ourselves to polynomials with integer
coefficients. Let m = (D + 1)d1∆, where ∆ is the number from Theorem 4.10. We

77

Chapter 4 Mixed-integer polynomial optimization via the summation method

apply Algorithm 4.18 using 0 < δ < 1 arbitrary to compute bounds Un and Ln for

n =
⌈
− logδ

(
2mD(U0 − L0)

)⌉
.

Because n is bounded by a polynomial in the input size and the maximum total
degree D, this can be done in polynomial time. Now, by the proof of Lemma 4.19,
we have

Un − Ln ≤ δn(U0 − L0) + (1 + δ)
1− δn−1

1− δ
(
f(xmax, zmax)− f(xmin, zmin)

)
≤ 1

2
m−D +

1 + δ

1− δ
(
f(xmax, zmax)− f(xmin, zmin)

)
. (4.28)

If f is constant on P ∩
(
Rd1 × Zd2

)
, it is constant on P ∩

(
1
m

Zd1 × Zd2
)
, then

Un − Ln ≤ 1
2
m−D. Otherwise, by Theorem 4.16, we have Un − Ln ≥ f(xmax, zmax)−

f(xmin, zmin) ≥ m−D. This settles part (a).
For part (b), if f is constant on P ∩

(
Rd1 × Zd2

)
, we return an arbitrary solution

as an optimal solution. Otherwise, we can estimate further:

Un − Ln ≤
(

1

2
+

1 + δ

1− δ

)(
f(xmax, zmax)− f(xmin, zmin)

)
. (4.29)

Now we apply the algorithm of Theorem 4.1 to the maximization problem of the
polynomial function f ′ := f − Ln, which is non-negative over the feasible region

P ∩
(
Rd1 × Zd2

)
. We compute a point (xε′ , zε′) where ε′ = ε

(
1
2

+ 1+δ
1−δ

)−1
such that∣∣f ′(xε′ , zε′)− f ′(xmax, zmax)

∣∣ ≤ ε′f ′(xmax, zmax).

Then we obtain the estimate∣∣f(xε′ , zε′)− f(xmax, zmax)
∣∣ ≤ ε′

(
f(xmax, zmax)− Ln

)
≤ ε′

(
Un − Ln

)
≤ ε′

(
1

2
+

1 + δ

1− δ

)(
f(xmax, zmax)− f(xmin, zmin)

)
= ε
(
f(xmax, zmax)− f(xmin, zmax)

)
,

which proves part (b).

Notes and sources

The pure integer case (section 4.2) appeared in De Loera et al. (2006b). The mixed-
integer case (section 4.3) was first published in De Loera et al. (2006c). The extension
to polynomials of arbitrary range appeared in De Loera et al. (2008a).

78

Chapter 5

Multicriteria mixed-integer
optimization

min f1(u)

f1

min f2(u)

f2

79

Chapter 5 Multicriteria mixed-integer optimization

We settle the computational complexity of fundamental questions related to mul-
ticriteria integer linear programs, when the dimensions of the strategy space and of
the outcome space are considered fixed constants. In particular we construct:

1. polynomial-time algorithms to exactly determine the number of Pareto optima
and Pareto strategies;

2. a polynomial-space polynomial-delay prescribed-order enumeration algorithm for
arbitrary projections of the Pareto set;

3. an algorithm to minimize the distance of a Pareto optimum from a prescribed
comparison point with respect to arbitrary polyhedral norms;

4. a fully polynomial-time approximation scheme for the problem of minimizing the
distance of a Pareto optimum from a prescribed comparison point with respect to
the Euclidean norm.

5.1 Introduction

Let A = (aij) be an integral m × n-matrix and b ∈ Zm such that the convex
polyhedron P = {u ∈ Rn : Au ≤ b } is bounded. Given k linear functionals
f1, f2, . . . , fk ∈ Zn, we consider the multicriterion integer linear programming prob-
lem

vmin
(
f1(u), f2(u), . . . , fk(u)

)
subject to Au ≤ b

u ∈ Zn

(5.1)

where vmin is defined as the problem of finding all Pareto optima and a corresponding
Pareto strategy; see Figure 5.1.

For a lattice point u the vector f(u) =
(
f1(u), . . . , fk(u)

)
is called an outcome

vector. Such an outcome vector is a Pareto optimum for the above problem if and
only if there is no other point ũ in the feasible set such that fi(ũ) ≤ fi(u) for all i
and fj(ũ) < fj(u) for at least one index j; see Figure 5.2. The corresponding feasible
point u is called a Pareto strategy. Thus a feasible vector is a Pareto strategy if no
feasible vector can decrease some criterion without causing a simultaneous increase
in at least one other criterion; see Figure 5.3. For general information about the
multicriteria problems see, e.g., Figueira et al. (2005), Sawaragi et al. (1985).

In general multiobjective problems the number of Pareto optimal solutions may
be infinite, but in our situation the number of Pareto optima and strategies is finite.
There are several well-known techniques to generate Pareto optima. Some popular
methods used to solve such problems include, e.g., weighting the objectives or using
a so-called global criterion approach (see Ehrgott and Gandibleux (2000)). In ab-
normally nice situations, such as multicriteria linear programs (Isermann, 1974), one

80

5.1 Introduction

u2

u1

min f1(u)

min f2(u)

Figure 5.1: Strategy space

min f1(u)

f1

min f2(u)

f2

Figure 5.2: Outcome space

81

Chapter 5 Multicriteria mixed-integer optimization

u2

u1

min f2(u)

min f1(u)

Figure 5.3: Pareto strategies

knows a way to generate all Pareto optima, but most techniques reach only some of
the Pareto optima.

The purpose of this article is to study the sets of all Pareto optima and strategies
of a multicriterion integer linear program using the algebraic structures of generating
functions. The set of Pareto points can be described as the formal sum of monomials∑{

zv : u ∈ P ∩ Zn and v = f(u) ∈ Zk is a Pareto optimum
}
. (5.2)

Our main theoretical result states that, under the assumption that the number of
variables is fixed, we can compute in polynomial time a compact expression for the
huge polynomial above, thus all its Pareto optima can in fact be counted exactly.
The same can be done for the corresponding Pareto strategies when written in the
form ∑{

xu : u ∈ P ∩ Zn and f(u) is a Pareto optimum
}
. (5.3)

Theorem 5.1. Let A ∈ Zm×n, an m-vector b, and linear functions f1, . . . , fk ∈ Zn

be given. There are algorithms to perform the following tasks:

(i) Compute the generating function (5.2) of all the Pareto optima as a sum of
rational functions. In particular we can count how many Pareto optima are
there. If we assume k and n are fixed, the algorithm runs in time polynomial
in the size of the input data.

(ii) Compute the generating function (5.3) of all the Pareto strategies as a sum
of rational functions. In particular we can count how many Pareto strategies
are there in P . If we assume k and n are fixed, the algorithm runs in time
polynomial in the size of the input data.

82

5.1 Introduction

(iii) Generate the full sequence of Pareto optima ordered lexicographically or by any
other term ordering. If we assume k and n are fixed, the algorithm runs in poly-
nomial time on the input size and the number of Pareto optima. (More strongly,
there exists a polynomial-space polynomial-delay prescribed-order enumeration
algorithm.)

In contrast it is known that for non-fixed dimension it is #P-hard to enumerate
Pareto optima and NP-hard to find them Emelichev and Perepelitsa (1992), Sergienko
and Perepelitsa (1991). The proof of Theorem 5.1 parts (i) and (ii) will be given in
section 5.2. Again it is based on the theory of rational generating functions. Part
(iii) of Theorem 5.1 will be proved in section 5.3.

For a user that knows some or all of the Pareto optima or strategies, a goal is to
select the “best” member of the family. One is interested in selecting one Pareto
optimum that realizes the “best” compromise between the individual objective func-
tions. The quality of the compromise is often measured by the distance of a Pareto
optimum v from a user-defined comparison point v̂. For example, often users take
as a good comparison point the so-called ideal point videal ∈ Zk of the multicriterion
problem, which is defined as

videal
i = min{ fi(u) : u ∈ P ∩ Zn }.

The criteria of comparison with the point v̂ are quite diverse, but some popular ones
include computing the minimum over the possible sums of absolute differences of the
individual objective functions, evaluated at the different Pareto strategies, from the
comparison point v̂, i.e.,

f(u) = |f1(u)− v̂1|+ · · ·+ |fk(u)− v̂k|, (5.4a)

or the maximum of the absolute differences,

f(u) = max
{
|f1(u)− v̂1|, . . . , |fk(u)− v̂k|

}
, (5.4b)

over all Pareto optima (f1(u), . . . , fk(u)). Another popular criterion, sometimes
called the global criterion, is to minimize the sum of relative distances of the in-
dividual objectives from their known minimal values, i.e.,

f(u) =
f1(u)− videal

1

|videal
1 |

+ · · ·+ fk(u)− videal
k

|videal
k |

. (5.4c)

We stress that if we take any one of these functions as an objective function
of an integer program, the optimal solution will be a non-Pareto solution of the
multicriterion problem (5.1) in general; see Figure 5.4. In contrast, we show here
that by encoding Pareto optima and strategies as a rational function we avoid this

83

Chapter 5 Multicriteria mixed-integer optimization

f1

f2

v̂

Figure 5.4: Global criteria

problem, since we evaluate the objective functions directly on the space of Pareto
optima.

All of the above criteria (5.4) measure the distance from a prescribed point with
respect to a polyhedral norm. In section 5.4, we prove:

Theorem 5.2. Let the dimension n and the number k of objective functions be fixed.
Let a multicriterion integer linear program (5.1) be given. Let a polyhedral norm ‖·‖Q
be given by the vertex or inequality description of its unit ball Q ⊆ Rk. Finally, let
a prescribed point v̂ ∈ Zk be given.

(i) There exists a polynomial-time algorithm to find a Pareto optimum v of (5.1)
that minimizes the distance ‖v − v̂‖Q from the prescribed point.

(ii) There exists a polynomial-space polynomial-delay enumeration algorithm for
enumerating the Pareto optima of (5.1) in the order of increasing distances
from the prescribed point v̂.

Often users are actually interested in finding a Pareto optimum that minimizes the
Euclidean distance from a prescribed comparison point v̂,

f(u) =

√
|f1(u)− v̂1|2 + · · ·+ |fk(u)− v̂k|2, (5.5)

but to our knowledge no method of the literature gives a satisfactory solution to that
problem. In section 5.4, however, we prove the following theorem, which gives a very
strong approximation result.

84

5.2 The rational function encoding of all Pareto optima

min f1(u)

f1

min f2(u)

f2

Figure 5.5: Outcome space

Theorem 5.3. Let the dimension n and the number k of objective functions be
fixed. There exists a fully polynomial-time approximation scheme for the problem of
minimizing the Euclidean distance of a Pareto optimum of (5.1) from a prescribed
comparison point v̂ ∈ Zk.

We actually prove this theorem in a somewhat more general setting, using an arbi-
trary norm whose unit ball is representable by a homogeneous polynomial inequality.

5.2 The rational function encoding of all Pareto
optima

One has to be careful when using the Barvinok–Woods theory (especially the Pro-
jection Theorem) that the sets in question are finite. The proof of Theorem 5.1 will
require us to project and intersect sets of lattice points represented by rational func-
tions. We cannot, in principle, do those operations for infinite sets of lattice points.
Fortunately, in our setting it is possible to restrict our attention to finite sets.

Proof of Theorem 5.1, part (i) and (ii). The proof of part (i) has three steps:

Step 1. For i = 1, . . . , k let v̄i ∈ Z be an upper bound of polynomial encoding size
for the value of fi over P . Such a bound exists because of the boundedness of P , and
it can be computed in polynomial time by linear programming. We will denote the
vector of upper bounds by v̄ ∈ Zk. We consider the truncated multi-epigraph of the

85

Chapter 5 Multicriteria mixed-integer optimization

min f1(u)

f1

min f2(u)

f2

Figure 5.6: Outcome space, epigraph

min f1(u)

f1

min f2(u)

f2

Figure 5.7: Outcome space, after erasing horizontally dominated solutions

86

5.2 The rational function encoding of all Pareto optima

min f1(u)

f1

min f2(u)

f2

Figure 5.8: Outcome space, after erasing vertically dominated solutions

min f1(u)

f1

f2

min f2(u)

Figure 5.9: Outcome space, after erasing all dominated solutions

87

Chapter 5 Multicriteria mixed-integer optimization

objective functions f1, . . . , fk over the linear relaxation of the feasible region P ,

P≥f1,...,fk =
{

(u,v) ∈ Rn ×Rk : u ∈ P,
v̄i ≥ vi ≥ fi(u) for i = 1, . . . , k

}
,

(5.6)

which is a rational convex polytope in Rn × Rk. Let V ≥ ⊆ Zk denote the integer
projection of P≥f1,...,fk on the v variables, i.e., the set

V ≥ =
{

v ∈ Zk : ∃u ∈ Zn with (u,v) ∈ P≥f1,...,fk ∩ (Zn × Zk)
}
. (5.7)

Clearly, the vectors in V ≥ are all integer vectors in the outcome space which are
weakly dominated by some outcome vector

(
f1(u), f2(u), . . . , fk(u)

)
for a feasible

solution u in P ∩ Zn; however, we have truncated away all outcome vectors which
weakly dominate the computed bound v̄. Let us consider the generating function
of V ≥, the multivariate polynomial

g(V ≥; z) =
∑{

zv : v ∈ V ≥
}
.

In the terminology of polynomial ideals, the monomials in g(V ≥; z) form a trun-
cated ideal generated by the Pareto optima. By the Projection Theorem (our Theo-
rem 3.30), we can compute g(V ≥; z) in the form of a polynomial-size rational function
in polynomial time.

Step 2. Let V Pareto ⊆ Zk denote the set of Pareto optima. Clearly we have

V Pareto =
(
V ≥ \ (e1 + V ≥)

)
∩ · · · ∩

(
V ≥ \ (ek + V ≥)

)
,

where ei ∈ Zk denotes the i-th unit vector and

ei + V ≥ = { ei + v : v ∈ V ≥ }.

The generating function g(V Pareto; z) can be computed by the Boolean Operations
Lemma (Theorem 3.29) in polynomial time from g(V ≥; z) as

g(V Pareto; z) =
(
g(V ≥; z)− g(V ≥; z) ∗ z1g(V ≥; z)

)
∗ · · · ∗

(
g(V ≥; z)− g(V ≥; z) ∗ zkg(V ≥; z)

)
,

(5.8)

where ∗ denotes taking the Hadamard product of the rational functions.

Step 3. To obtain the number of Pareto optima, we compute the specialization
g(V Pareto; z = 1). This is possible in polynomial time using residue techniques as
outlined before the beginning of the proof.

88

5.2 The rational function encoding of all Pareto optima

Proof of part (ii). Now we recover the Pareto strategies that gave rise to the Pareto
optima, i.e., we compute a generating function for the set

UPareto =
{

u ∈ Zn : u ∈ P ∩ Zn and f(u) is a Pareto optimum
}
.

To this end, we first compute the generating function for the set

SPareto =
{

(u,v) ∈ Zn × Zk : v is a Pareto point with Pareto strategy u
}
.

For this purpose, we consider the multi-graph of the objective functions f1, . . . , fk
over P ,

P=
f1,...,fk

=
{

(u,v) ∈ Rn ×Rk : u ∈ P,
vi = fi(u) for i = 1, . . . , k

}
.

(5.9)

Using Barvinok’s theorem, we can compute in polynomial time the generating func-
tion for the integer points in P ,

g(P ; x) =
∑{

xu : u ∈ P ∩ Zn
}
,

and also, using the monomial substitution xj → xjz
f1(ej)
1 · · · zfk(ej)

k for all j, the
generating function is transformed into

g(P=
f1,...,fk

; x, z) =
∑{

xuzv : (u,v) ∈ P=
f1,...,fk

∩ (Zn × Zk)
}
,

where the variables x carry on the monomial exponents the information of the u-
coordinates of P=

f1,...,fk
and the z variables of the generating function carry the v-

coordinates of lattice points in P=
f1,...,fk

. Now

g(SPareto; x, z) =
(
g(P ; x) g(V Pareto; z)

)
∗ g(P=

f1,...,fk
; x, z), (5.10)

which can be computed in polynomial time for fixed dimension by the theorems
outlined early on this section. Finally, to obtain the generating function g(UPareto; x)
of the Pareto strategies, we need to compute the projection of SPareto into the space
of the strategy variables u. Since the projection is one-to-one, it suffices to compute
the specialization

g(UPareto; x) = g(SPareto; x, z = 1),

which can be done in polynomial time.

A simplified construction of the rational generating function was proposed by
V. Blanco (2007, personal communication); this also removes the need to fix the
number of criteria in advance.

89

Chapter 5 Multicriteria mixed-integer optimization

5.3 Efficiently listing all Pareto optima

The Pareto optimum that corresponds to the “best” compromise between the individ-
ual objective functions is often chosen in an interactive mode, where a visualization
of the Pareto optima is presented to the user, who then chooses a Pareto optimum.
Since the outcome space frequently is of a too large dimension for visualization, an
important task is to list (explicitly enumerate) the elements of the projection of the
Pareto set into some lower-dimensional linear space.

It is clear that the set of Pareto optima (and thus also any projection) is of ex-
ponential size in general, ruling out the existence of a polynomial-time enumeration
algorithm. In order to analyze the running time of an enumeration algorithm, we
must turn to output-sensitive complexity analysis.

Various notions of output-sensitive efficiency have appeared in the literature; we
follow the discussion of Johnson et al. (1988). Let W ⊆ Zp be a finite set to be
enumerated. An enumeration algorithm is said to run in polynomial total time if its
running time is bounded by a polynomial in the encoding size of the input and the
output. A stronger notion is that of incremental polynomial time: Such an algorithm
receives a list of solutions w1, . . . ,wN ∈ W as an additional input. In polynomial
time, it outputs one solution w ∈ W \ {w1, . . . ,wN} or asserts that there are no
more solutions. An even stronger notion is that of a polynomial-delay algorithm,
which takes only polynomial time (in the encoding size of the input) before the
first solution is output, between successive outputs of solutions, and after the last
solution is output to the termination of the algorithm. Since the algorithm could
take exponential time to output all solutions, it could also build exponential-size
data structures in the course of the enumeration. This observation gives rise to an
even stronger notion of efficiency, a polynomial-space polynomial-delay enumeration
algorithm.

We also wish to prescribe an order, like the lexicographic order, in which the
elements are to be enumerated. We consider term orders ≺R on monomials yw

that are defined as in Mora and Robbiano (1988) by a non-negative integral p × p-
matrix R of full rank. Two monomials satisfy yw1 ≺R yw2 if and only if Rw1 is
lexicographically smaller than Rw2. In other words, if r1, . . . , rn denote the rows
of R, there is some j ∈ {1, . . . , n} such that 〈ri,w1〉 = 〈ri,w2〉 for i < j, and
〈rj,w1〉 < 〈rj,w2〉. For example, the unit matrix R = In describes the lexicographic
term ordering.

We prove the existence of a polynomial-space polynomial-delay prescribed-order
enumeration algorithm in a general setting, where the set W to be enumerated is
given as the projection of a set presented by a rational generating function.

Theorem 5.4. Let the dimension k and the maximum number ` of binomials in the
denominator be fixed.

Let V ⊆ Zk be a bounded set of lattice points with V ⊆ [−M,M]k, given only by the

90

5.3 Efficiently listing all Pareto optima

bound M ∈ Z+ and its rational generating function encoding g(V ; z) with at most `
binomials in each denominator. Let

W = {w ∈ Zp : ∃t ∈ Zk−p such that (t,w) ∈ V }

denote the projection of V onto the last p components. Let ≺R be the term order on
monomials in y1, . . . , yp induced by a given matrix R ∈ Np×p.

There exists a polynomial-space polynomial-delay enumeration algorithm for the
points in the projection W , which outputs the points of W in the order given by ≺R.
The algorithm can be implemented without using the Projection Lemma.

We remark that Theorem 5.4 is a stronger result than what can be obtained by the
repeated application of the monomial-extraction technique of Lemma 7 from De Loera
et al. (2004), which would only give an incremental polynomial time enumeration
algorithm.

Proof. We give a simple recursive algorithm that is based on the iterative bisection
of intervals.

Input: Lower and upper bound vectors l,u ∈ Zp.

Output: All vectors w in W with l ≤ Rw ≤ u, sorted in the order �R.

1. If the set W ∩ {w : l ≤ Rw ≤ u } is empty, do nothing.

2. Otherwise, if l = u, compute the unique point w ∈ Zk with Rw =
l = u and output w.

3. Otherwise, let j be the smallest index with lj 6= uj. We bisect
the integer interval {lj, . . . , uj} evenly into {lj, . . . ,mj} and {mj +

1, . . . , uj}, where mj =
⌊
lj+uj

2

⌋
. We invoke the algorithm recursively

on the first part, then on the second part, using the corresponding
lower and upper bound vectors.

We first need to compute appropriate lower and upper bound vectors l,u to start
the algorithm. To this end, let N be the largest number in the matrix R and let
l = −pMN1 and u = pMN1. Then l ≤ Rw ≤ u holds for all w ∈ W . Clearly the
encoding length of l and u is bounded polynomially in the input data.

In step 1 of the algorithm, to determine whether

W ∩ {w : l ≤ Rw ≤ u } = ∅, (5.11)

we consider the polytope

Ql,u = [−M,M]k−p × {w ∈ Rp : l ≤ Rw ≤ u } ⊆ Rk, (5.12)

a parallelelepiped in Rk. Since W is the projection of V and since V ⊆ [−M,M]k, we
have (5.11) if and only if V ∩Ql,u = ∅. The rational generating function g(Ql,u; z) can

91

Chapter 5 Multicriteria mixed-integer optimization

be computed in polynomial time. By using the Intersection Lemma, we can compute
the rational generating function g(V ∩Ql,u; z) in polynomial time. The specialization
g(V ∩Ql,u; z = 1) can also be computed in polynomial time. It gives the number of
lattice points in V ∩Ql,u; in particular, we can decide whether V ∩Ql,u = ∅.

It is clear that the algorithm outputs the elements of W in the order given by ≺R.
We next show that the algorithm is a polynomial-space polynomial-delay enumeration
algorithm. The subproblem in step 1 only depends on the input data as stated in
the theorem and on the vectors l and u, whose encoding length only decreases in
recursive invocations. Therefore each of the subproblems can be solved in polynomial
time (thus also in polynomial space).

The recursion of the algorithm corresponds to a binary tree whose nodes are la-
beled by the bound vectors l and u. There are two types of leaves in the tree, one
corresponding to the “empty-box” situation (5.11) in step 1, and one corresponding
to the “solution-output” situation in step 2. Inner nodes of the tree correspond to
the recursive invocation of the algorithm in step 3. It is clear that the depth of the
recursion is O(p log(pMN)), because the integer intervals are bisected evenly. Thus
the stack space of the algorithm is polynomially bounded. Since the algorithm does
not maintain any global data structures, the whole algorithm uses polynomial space
only.

Let wi ∈ W be an arbitrary solution and let wi+1 be its direct successor in the
order ≺R. We shall show that the algorithm only spends polynomial time between
the output of wi and the output of wi+1. The key property of the recursion tree of
the algorithm is the following:

Every inner node is the root of a subtree that contains at least one
solution-output leaf.

(5.13)

The reason for that property is the test for situation (5.11) in step 1 of the algorithm.
Therefore, the algorithm can visit only O(p log(pMN)) inner nodes and empty-box
leaves between the solution-output leaves for wi and wi+1. For the same reason, also
the time before the first solution is output and the time after the last solution is
output are polynomially bounded.

The following corollary, which is a stronger formulation of Theorem 5.1 (iii), is
immediate.

Corollary 5.5. Let n and k be fixed integers. There exist polynomial-space polynomial-
delay enumeration algorithms to enumerate the set of Pareto optima of the multicrite-
rion integer linear program (5.1), the set of Pareto strategies, or arbitrary projections
thereof in lexicographic order (or an arbitrary term order).

Remark 5.6. We remark that Theorem 5.4 is of general interest. For instance, it
also implies the existence of a polynomial-space polynomial-delay prescribed-order

92

5.4 Selecting a Pareto optimum using polyhedral global criteria

enumeration algorithm for Hilbert bases of rational polyhedral cones in fixed dimen-
sion.

Indeed, fix the dimension d and let C = cone{b1, . . . ,bn} ⊆ Rd be a pointed
rational polyhedral cone. The Hilbert basis of C is defined as the inclusion-minimal
set H ⊆ C ∩Zd which generates C ∩Zd as a monoid. For simplicial cones C (where
b1, . . . ,bn are linearly independent), Barvinok and Woods (2003) proved that one
can compute the rational generating function g(H; z) (having a constant number of
binomials in the denominators) of the Hilbert basis of C ∩ Zd using the Projection
Theorem. The same technique works for non-simplicial pointed cones. Now The-
orem 5.4 gives a polynomial-space polynomial-delay prescribed-order enumeration
algorithm.

5.4 Selecting a Pareto optimum using polyhedral
global criteria

Now that we know that all Pareto optima of a multicriteria integer linear programs
can be encoded in a rational generating function, and that they can be listed effi-
ciently on the output size, we can aim to apply selection criteria stated by a user.
The advantage of our setup is that when we optimize a global objective function
it guarantees to return a Pareto optimum, because we evaluate the global criterion
only on the Pareto optima. Let us start with the simplest global criterion which
generalizes the use of the `1 norm distance function:

Theorem 5.7. Let the dimension k and the maximum number ` of binomials in the
denominator be fixed.

Let V ⊆ Zk be a bounded set of lattice points with V ⊆ [−M,M]n+k, given only
by the bound M ∈ Z+ and its rational generating function encoding g(V ; z) with at
most ` binomials in the denominators.

Let Q ⊆ Rk be a rational convex central-symmetric polytope with 0 ∈ intQ, given
by its vertex or inequality description. Let the polyhedral norm ‖·‖Q be defined using
the Minkowski functional

‖y‖Q = inf{λ ≥ 0 : y ∈ λQ }. (5.14)

Finally, let a prescribed point v̂ ∈ Zk be given.

(i) There exists a polynomial-time algorithm to find a point v ∈ V that minimizes
the distance dQ(v, v̂) = ‖v − v̂‖Q from the prescribed point.

(ii) There exists a polynomial-space polynomial-delay enumeration algorithm for
enumerating the points of V in the order of increasing distances dQ from the
prescribed point v̂, refined by an arbitrary term order ≺R given by a ma-
trix R ∈ Nk×k.

93

Chapter 5 Multicriteria mixed-integer optimization

Theorem 5.2, as stated in the introduction, is an immediate corollary of this the-
orem.

Proof. Since the dimension k is fixed, we can compute an inequality description

Q = {y ∈ Rk : Ay ≤ b }

of Q with A ∈ Zm×k and b ∈ Zk in polynomial time, if Q is not already given by an
inequality description. Let v ∈ V be arbitrary; then

dQ(v̂,v) = ‖v − v̂‖Q
= inf

{
λ ≥ 0 : v − v̂ ∈ λQ

}
= min

{
λ ≥ 0 : λb ≥ A(v − v̂)

}
.

Thus there exists an index i ∈ {1, . . . ,m} such that

dQ(v̂,v) =
(Av)i − (Av̂)i

bi
;

so dQ(v̂,v) is an integer multiple of 1/bi. Hence for every v ∈ V , we have that

dQ(v̂,v) ∈ 1

lcm(b1, . . . , bm)
Z+, (5.15)

where lcm(b1, . . . , bm) clearly is a number of polynomial encoding size. On the other
hand, every v ∈ V certainly satisfies

dQ(v̂,v) ≤ ka
(
M + max{|v̂1| , . . . , |v̂d|}

)
(5.16)

where a is the largest number in A, which is also a bound of polynomial encoding
size.

Using Barvinok’s algorithm, we can compute the rational generating function g(v̂+
λQ; z) for any rational λ of polynomial enoding size in polynomial time. We can also
compute the rational generating function g(V ∩ (v̂ + λQ); z) using the Intersection
Lemma. By computing the specialization g(V ∩ (v̂ + λQ); z = 1), we can compute
the number of points in V ∩ (v̂ + λQ), thus we can decide whether this set is empty
or not.

Hence we can employ binary search for the smallest λ ≥ 0 such that V ∩ (v̂ + λQ)
is nonempty. Because of (5.15) and (5.16), it runs in polynomial time. By using
the recursive bisection algorithm of Theorem 5.4, it is then possible to construct one
Pareto optimum in V ∩ (v̂ + λQ) for part (i), or to construct a sequence of Pareto
optima in the desired order for part (ii).

94

5.5 Selecting a Pareto optimum using non-polyhedral global criteria

5.5 Selecting a Pareto optimum using non-polyhedral
global criteria

Now we consider a global criterion using a distance function corresponding to a non-
polyhedral norm like the Euclidean norm ‖·‖2 (or any other `p-norm for 1 < p <
∞). We are able to prove a very strong type of approximation result, a so-called
fully polynomial-time approximation scheme (FPTAS), in a somewhat more general
setting.

Definition 5.8 (FPTAS). Consider the optimization problems

max{ f(v) : v ∈ V }, (5.17a)

min{ f(v) : v ∈ V }. (5.17b)

A fully polynomial-time approximation scheme (FPTAS) for the maximization prob-
lem (5.17a) or the minimization problem (5.17b), respectively, is a family {Aε : ε ∈
Q, ε > 0 } of approximation algorithmsAε, each of which returns an ε-approximation,
i.e., a solution vε ∈ V with

f(vε) ≥ (1− ε)f ∗ where f ∗ = max
v∈V

f(v), (5.18a)

or, respectively,

f(vε) ≤ (1 + ε)f ∗ where f ∗ = min
v∈V

f(v), (5.18b)

such that the algorithms Aε run in time polynomial in the input size and 1
ε
.

Remark 5.9. An FPTAS is based on the notion of ε-approximation (5.18), which
gives an approximation guarantee relative to the value f ∗ of an optimal solution. It
is clear that this notion is most useful for objective functions f that are non-negative
on the feasible region V . Since the approximation quality of a solution changes when
the objective function is changed by an additive constant, it is non-trivial to convert
an FPTAS for a maximization problem to an FPTAS for a minimization problem.

We shall present an FPTAS for the problem of minimizing the distance of a Pareto
optimum from a prescribed outcome vector v̂ ∈ Zk. We consider distances d(v̂, ·)
induced by a pseudo-norm ‖·‖Q via

d(v̂,v) = ‖v − v̂‖Q (5.19a)

To this end, let Q ⊆ Rk be a compact basic semialgebraic set with 0 ∈ intQ, which
is described by one polynomial inequality,

Q =
{

y ∈ Rk : q(y) ≤ 1
}
, (5.19b)

95

Chapter 5 Multicriteria mixed-integer optimization

Figure 5.10: A set defining a pseudo-norm with the inscribed and circumscribed cubes
αB∞ and βB∞ (dashed).

where q ∈ Q[y1, . . . , yk] is a homogeneous polynomial of (even) degree D. The
pseudo-norm ‖·‖Q is now defined using the Minkowski functional

‖y‖Q = inf
{
λ ≥ 0 : y ∈ λQ

}
(5.19c)

Note that we do not make any assumptions of convexity of Q, which would make
‖·‖Q a norm. Since Q is compact and 0 ∈ intQ, there exist positive rational numbers
(norm equivalence constants) α, β with

αB∞ ⊆ Q ⊆ βB∞ where B∞ =
{

y ∈ Rk : ‖y‖∞ ≤ 1
}

; (5.20)

see Figure 5.10.

Now we can formulate our main theorem, which has Theorem 5.3, which we stated
in the introduction, as an immediate corollary.

Theorem 5.10. Let the dimension n and the number k of objective functions be
fixed. Moreover, let a degree D and two rational numbers 0 < α ≤ β be fixed.
Then there exists a fully polynomial-time approximation scheme for the problem of
minimizing the distance dQ(v̂,v), defined via (5.19) by a homogeneous polynomial q ∈
Q[y1, . . . , yk] of degree D satisfying (5.20), whose coefficients are encoded in binary
and whose exponent vectors are encoded in unary, of a Pareto optimum of (5.1) from
a prescribed outcome vector v̂ ∈ Zk.

The proof is based on the FPTAS for polynomial optimization over lattice point
sets (Theorem 4.3).

Proof of Theorem 5.10. Using Theorem 5.1, we first compute the rational generating
function g(V Pareto; z) of the Pareto optima. With binary search using the Intersection
Lemma with generating functions of cubes as in section 5.3, we can find the smallest
non-negative integer γ such that

(v̂ + γB∞) ∩ V Pareto 6= ∅. (5.21)

If γ = 0, then the prescribed outcome vector v̂ itself is a Pareto optimum, so it is
the optimal solution to the problem.

96

5.5 Selecting a Pareto optimum using non-polyhedral global criteria

Otherwise, let v0 be an arbitrary outcome vector in (v̂ + γB∞) ∩ V Pareto. Then

γ ≥ ‖v0 − v̂‖∞ = inf
{
λ : v0 − v̂ ∈ λB∞

}
≥ inf

{
λ : v0 − v̂ ∈ λ 1

α
Q
}

= α ‖v0 − v̂‖Q ,

thus ‖v0 − v̂‖Q ≤ γ/α. Let δ = βγ/α. Then, for every v1 ∈ Rk with ‖v1 − v̂‖∞ ≥ δ
we have

δ ≤ ‖v1 − v̂‖∞ = inf
{
λ : v1 − v̂ ∈ λB∞

}
≤ inf

{
λ : v1 − v̂ ∈ λ 1

β
Q
}

= β ‖v1 − v̂‖Q ,
thus

‖v1 − v̂‖Q ≥ δ/β = γ/α ≥ ‖v0 − v̂‖Q .

Therefore, a Pareto optimum v∗ ∈ V Pareto minimizing the distance dQ from the
prescribed outcome vector v̂ is contained in the cube v̂ + δB∞. Moreover, for all
points v ∈ v̂ + δB∞ we have

‖v0 − v̂‖Q ≤ δ/α = βγ/α2.

We define a function f by

f(v) =
(
βγ/α2

)D − ‖v − v̂‖DQ , (5.22)

which is non-negative over the cube v̂ + δB∞. Since q is a homogeneous polynomial
of degree D, we obtain

f(v) =
(
βγ/α2

)D − q(v − v̂) (5.23)

so f is a polynomial.
We next compute the rational generating function

g(V Pareto ∩ (v̂ + δB∞); z)

from g(V Pareto; z) using the Intersection Lemma. Let ε′ > 0 be a rational number,
which we will determine later. By Theorem 4.3, we compute a solution vε′ ∈ V Pareto

with
f(vε′) ≥ (1− ε′)f(v∗),

or, equivalently,
f(v∗)− f(vε′) ≤ ε′ f(v∗).

Thus,

[dQ(v̂,vε′)]
D − [dQ(v̂,v∗)]D = ‖vε′ − v̂‖DQ − ‖v

∗ − v̂‖DQ
= f(v∗)− f(vε′)

≤ ε′ f(v∗)

= ε′
((
βγ/α2

)D − ‖v∗ − v̂‖DQ
)
.

97

Chapter 5 Multicriteria mixed-integer optimization

Since γ is the smallest integer with (5.21) and also ‖v∗ − v̂‖∞ is an integer, we have

γ ≤ ‖v∗ − v̂‖∞ ≤ β ‖v∗ − v̂‖Q .

Thus,

[dQ(v̂,vε′)]
D − [dQ(v̂,v∗)]D ≤ ε′

[(
β

α

)2D

− 1

]
‖v∗ − v̂‖DQ .

An elementary calculation yields

dQ(v̂,vε′)− dQ(v̂,v∗) ≤ ε′

D

[(
β

α

)2D

− 1

]
dQ(v̂,v∗).

Thus we can choose

ε′ = εD

[(
β

α

)2D

− 1

]−1

(5.24)

to get the desired estimate. Since α, β and D are fixed constants, we have ε′ = Θ(ε).
Thus the computation of vε′ ∈ V Pareto by Theorem 4.3 runs in time polynomial in
the input encoding size and 1

ε
.

Remark 5.11. It is straightforward to extend this result to also include the `p
norms for odd integers p, by solving the approximation problem separately for all of
the 2k = O(1) shifted orthants v̂+Oσ = {v : σi(vi− v̂i) ≥ 0 }, where σ ∈ {±1}k. On
each of the orthants, the `p-norm has a representation by a polynomial as required
by Theorem 5.10.

Notes and sources

This chapter is based on De Loera et al. (2009b).

98

Chapter 6

Further applications

An application of rational generating functions to the computation of pure Nash equi-
libria in integer programming games appears in Köppe et al. (2008a). A continuous
version of the summation method is explored in Baldoni et al. (2010).

99

Chapter 6 Further applications

100

Bibliography

L. Adleman and K. Manders. Reducibility, randomness and intractability. In Proc.
9th Annual ACM Symposium on Theory of Computing, pages 151–163, 1977.

M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Annals of Math., 160:
781–793, 2004.

V. Baldoni, N. Berline, J. A. De Loera, M. Köppe, and M. Vergne. How to integrate
a polynomial over a simplex. Mathematics of Computation, posted online July 14,
2010.

A. I. Barvinok. A polynomial time algorithm for counting integral points in polyhedra
when the dimension is fixed. Mathematics of Operations Research, 19:769–779,
1994a.

A. I. Barvinok. Polynomial time algorithm for counting integral points in polyhedra
when the dimension is fixed. Mathematics of Operations Research, 19:769–779,
1994b.

A. I. Barvinok. Computing the volume, counting integral points, and exponential
sums. Discrete Comput. Geom., 10(2):123–141, 1993.

A. I. Barvinok. Computing the Ehrhart quasi-polynomial of a rational simplex. Math.
Comp., 75(255):1449–1466 (electronic), 2006a.

A. I. Barvinok. Computing the Ehrhart quasi-polynomial of a rational simplex. Math.
Comp., 75(255):1449–1466, 2006b.

A. I. Barvinok and J. E. Pommersheim. An algorithmic theory of lattice points in
polyhedra. In L. J. Billera, A. Björner, C. Greene, R. E. Simion, and R. P. Stanley,
editors, New Perspectives in Algebraic Combinatorics, volume 38 of Math. Sci. Res.
Inst. Publ., pages 91–147. Cambridge Univ. Press, Cambridge, 1999a.

A. I. Barvinok and J. E. Pommersheim. An algorithmic theory of lattice points in
polyhedra. In L. J. Billera, A. Björner, C. Greene, R. E. Simion, and R. P. Stanley,
editors, New Perspectives in Algebraic Combinatorics, volume 38 of Math. Sci. Res.
Inst. Publ., pages 91–147. Cambridge Univ. Press, Cambridge, 1999b.

101

Bibliography

A. I. Barvinok and K. Woods. Short rational generating functions for lattice point
problems. Journal of the AMS, 16(4):957–979, 2003.

M. Beck and F. Sottile. Irrational proofs for three theorems of Stanley. European
Journal of Combinatorics, 28(1):403–409, 2007.

M. Beck, C. Haase, and F. Sottile. Formulas of Brion, Lawrence, and Varchenko on
rational generating functions for cones. eprint arXiv:math.CO/0506466, 2006.

M. Bellare and P. Rogaway. The complexity of approximating a nonlinear program.
Mathematical Programming, 69(1):429–441, Jul 1995. doi: 10.1007/BF01585569.
URL http://dx.doi.org/10.1007/BF01585569.

M. Bellare and P. Rogaway. The complexity of aproximating a nonlinear program.
In Pardalos (1993).

Y. Berstein and S. Onn. Nonlinear bipartite matching. Discrete Optimization, 5:
53–65, 2008.

Y. Berstein, J. Lee, H. Maruri-Aguilar, S. Onn, E. Riccomagno, R. Weismantel, and
H. Wynn. Nonlinear matroid optimization and experimental design. SIAM Journal
on Discrete Mathematics, 22(3):901–919, 2008a.

Y. Berstein, J. Lee, S. Onn, and R. Weismantel. Nonlinear optimization for matroid
intersection and extensions. IBM Research Report RC24610, 2008b.

L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over
the real numbers: NP-completeness, recursive functions and universal machines.
Bull. Am. Math. Soc., 21:1–46, 1989.

M. Brion. Points entiers dans les polyédres convexes. Ann. Sci. École Norm. Sup.,
21(4):653–663, 1988.

D. A. Cox, J. B. Little, and D. O’Shea. Ideals, Varieties, and Algorithms: An Intro-
duction to Computational Algebraic Geometry and Commutative Algebra. Springer,
Berlin, Germany, 1992.

E. de Klerk. The complexity of optimizing over a simplex, hypercube or sphere: a
short survey. Central European Journal of Operations Research, 16(2):111–125,
Jun 2008. doi: 10.1007/s10100-007-0052-9. URL http://dx.doi.org/10.1007/

s10100-007-0052-9.

E. de Klerk, M. Laurent, and P. A. Parrilo. A PTAS for the minimization of polyno-
mials of fixed degree over the simplex. Theoretical Computer Science, 361:210–225,
2006.

102

http://dx.doi.org/10.1007/BF01585569
http://dx.doi.org/10.1007/s10100-007-0052-9
http://dx.doi.org/10.1007/s10100-007-0052-9

Bibliography

J. A. De Loera and S. Onn. All linear and integer programs are slim 3-way trans-
portation programs. SIAM Journal of Optimization, 17:806–821, 2006a.

J. A. De Loera and S. Onn. Markov bases of three-way tables are arbitrarily com-
plicated. Journal of Symbolic Computation, 41:173–181, 2006b.

J. A. De Loera, D. Haws, R. Hemmecke, P. Huggins, B. Sturmfels, and R. Yoshida.
Short rational functions for toric algebra and applications. Journal of Symbolic
Computation, 38(2):959–973, 2004.

J. A. De Loera, R. Hemmecke, M. Köppe, and R. Weismantel. FPTAS for mixed-
integer polynomial optimization with a fixed number of variables. In 17th ACM-
SIAM Symposium on Discrete Algorithms, pages 743–748, 2006a.

J. A. De Loera, R. Hemmecke, M. Köppe, and R. Weismantel. Integer polynomial
optimization in fixed dimension. Mathematics of Operations Research, 31(1):147–
153, 2006b.

J. A. De Loera, R. Hemmecke, M. Köppe, and R. Weismantel. FPTAS for mixed-
integer polynomial optimization with a fixed number of variables. In Proceedings
of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms, Miami, FL,
January 22–24, 2006, pages 743–748, 2006c.

J. A. De Loera, R. Hemmecke, M. Köppe, and R. Weismantel. FPTAS for optimizing
polynomials over the mixed-integer points of polytopes in fixed dimension. Math-
ematical Programming, Series A, 118:273–290, 2008a. doi: 10.1007/s10107-007-
0175-8.

J. A. De Loera, R. Hemmecke, S. Onn, and R. Weismantel. N-fold integer program-
ming. Disc. Optim., to appear, 2008b.

J. A. De Loera, D. C. Haws, and M. Köppe. Ehrhart polynomials of matroid poly-
topes and polymatroids. Discrete Comput. Geom., 42(4):670–702, 2009a. doi:
10.1007/s00454-008-9080-z.

J. A. De Loera, R. Hemmecke, and M. Köppe. Pareto optima of multicriteria integer
linear programs. INFORMS Journal on Computing, 21(1):39–48, Winter 2009b.
doi: 10.1287/ijoc.1080.0277.

M. Dyer and R. Kannan. On Barvinok’s algorithm for counting lattice points in fixed
dimension. Mathematics of Operations Research, 22:545–549, 1997.

M. Ehrgott and X. Gandibleux. A survey and annotated bibliography of multiobjec-
tive combinatorial optimization. OR Spektrum, 22:425–460, 2000.

103

Bibliography

F. Eisenbrand. Integer programming and algorithmic geometry of numbers. In
M. Jünger, T. Liebling, D. Naddef, W. Pulleyblank, G. Reinelt, G. Rinaldi, and
L. Wolsey, editors, 50 Years of Integer Programming 1958–2008. Springer-Verlag,
2010.

F. Eisenbrand and G. Shmonin. Parametric integer programming in fixed dimension,
2008. http://arXiv.org/abs/0801.4336.

V. A. Emelichev and V. A. Perepelitsa. On the cardinality of the set of alternatives
in discrete many-criterion problems. Discrete Mathematics and Applications, 2:
461–471, 1992.

J. Figueira, S. Greco, and M. Ehrgott, editors. Multiple Criteria Decision Analysis.
State of the Art Surveys. Springer, 2005.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-completeness. W. H. Freeman and Company, New York, NY, 1979.

M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial
Optimization. Springer, Berlin, Germany, 1988.

J. H̊astad. Some optimal inapproximability results. In Proceedings of the 29th Sym-
posium on the Theory of Computing (STOC), pages 1–10. ACM, 1997.

R. Hemmecke, S. Onn, and R. Weismantel. A polynomial oracle-time algorithm for
convex integer minimization. Mathematical Programming, Series A, 2009. doi:
10.1007/s10107-009-0276-7. Published online 06 March 2009.

R. Hildebrand and M. Köppe. A faster algorithm for quasi-convex integer polynomial
optimization. eprint arXiv:1006.4661 [math.OC], 2010.

D. Hochbaum. Complexity and algorithms for nonlinear optimization problems. An-
nals of Operations Research, 153(1):257–296, Sep 2007. doi: 10.1007/s10479-007-
0172-6. URL http://dx.doi.org/10.1007/s10479-007-0172-6.

H. Isermann. Proper efficiency and the linear vector maximum problem. Operations
Research, 22:189–191, 1974.

R. G. Jeroslow. There cannot be any algorithm for integer programming with
quadratic constraints. Operations Research, 21(1):221–224, 1973.

D. S. Johnson, M. Yannakakis, and Ch. H. Papadimitriou. On generating all maximal
independent sets. Information Processing Letters, 27:119–123, 1988.

J. P. Jones. Universal diophantine equation. Journal of Symbolic Logic, 47(3):403–
410, 1982.

104

http://arXiv.org/abs/0801.4336
http://dx.doi.org/10.1007/s10479-007-0172-6

Bibliography

J. P. Jones and Yu. V. Matiyasevich. Proof of recursive unsolvability of Hilbert’s
tenth problem. The American Mathematical Monthly, 98(8):689–709, Oct. 1991.

M. Köppe. A primal Barvinok algorithm based on irrational decompositions. SIAM
Journal on Discrete Mathematics, 21(1):220–236, 2007. doi: 10.1137/060664768.

M. Köppe. LattE macchiato, version 1.2-mk-0.9.3, an improved version of De Lo-
era et al.’s LattE program for counting integer points in polyhedra with variants
of Barvinok’s algorithm. Available from URL http://www.math.ucdavis.edu/

~mkoeppe/latte/, 2008.

M. Köppe and S. Verdoolaege. Computing parametric rational generating functions
with a primal Barvinok algorithm. The Electronic Journal of Combinatorics, 15:
1–19, 2008. #R16.

M. Köppe, C. T. Ryan, and M. Queyranne. Rational generating functions and integer
programming games. eprint arXiv:0809.0689v1 [cs.GT], 2008a.

M. Köppe, S. Verdoolaege, and K. M. Woods. An implementation of the Barvinok–
Woods integer projection algorithm. Information Theory and Statistical Learning
(ITSL 2008), Las Vegas, Proceedings, 2008b.

J. C. Lagarias. On the computational complexity of determining the solvability
or unsolvability of the equation x2 − dy2 = −1. Transactions of the American
Mathematical Society, 260(2):485–508, 1980. ISSN 00029947. URL http://www.

jstor.org/stable/1998017.

J. C. Lagarias. Succinct certificates for the solvability of binary quadratic diophantine
equations. e-print arXiv:math/0611209v1, 2006. Extended and updated version of
a 1979 FOCS paper.

J. Lawrence. Rational-function-valued valuations on polyhedra. In Discrete and
Computational Geometry (New Brunswick, NJ, 1989/1990), volume 6 of DIMACS
Ser. Discrete Math. Theoret. Comput. Sci., pages 199–208. Amer. Math. Soc.,
Providence, RI, 1991.

J. Lee, S. Onn, and R. Weismantel. On test sets for nonlinear integer maximization.
Operations Research Letters, 36:439–443, 2008a.

J. Lee, S. Onn, and R. Weismantel. Nonlinear optimization over a weighted inde-
pendence system. IBM Research Report RC24513, 2008b.

H. W. Lenstra. Integer programming with a fixed number of variables. Mathematics
of Operations Research, 8:538–548, 1983.

105

http://www.math.ucdavis.edu/~mkoeppe/latte/
http://www.math.ucdavis.edu/~mkoeppe/latte/
http://www.jstor.org/stable/1998017
http://www.jstor.org/stable/1998017

Bibliography

K. Manders and L. Adleman. NP-complete decision problems for binary quadratics.
J. Comp. Sys. Sci., 16:168–184, 1978.

Yu. V. Matiyasevich. Enumerable sets are diophantine. Doklady Akademii Nauk
SSSR, 191:279–282, 1970. (Russian); English translation, Soviet Mathematics
Doklady, vol. 11 (1970), pp. 354–357.

Yu. V. Matiyasevich. Hilbert’s tenth problem. The MIT Press, Cambridge, MA, USA,
1993.

T. Mora and L. Robbiano. The Gröbner fan of an ideal. Journal of Symbolic Com-
putation, 6(2–3):183–208, 1988.

T. S. Motzkin and E. G. Straus. Maxima for graphs and a new proof of a theorem
of Turán. Canadian Journal of Mathematics, 17:533–540, 1965.

S. Onn. Convex discrete optimization. eprint arXiv:math/0703575, 2007.

P. M. Pardalos, editor. Complexity in Numerical Optimization. World Scientific,
1993.

A. V. Pukhlikov and A. G. Khovanskii. A riemann-roch theorem for integrals and
sums of quasi-polynomials over virtual polytopes. St. Petersburg Math. J.,, 4(4):
789–812, 1993.

Y. Sawaragi, H. Nakayama, and T. Tanino, editors. Theory of Multiobjective Opti-
mization. Academic Press, 1985.

I. V. Sergienko and V. A. Perepelitsa. Finding the set of alternatives in discrete
multi-criterion problems. Cybernetics, 3:673–683, 1991.

C. L. Siegel. Zur Theorie der quadratischen Formen. Nachrichten der Akademie
der Wissenschaften in Göttingen, II, Mathematisch-Physikalische Klasse, 3:21–46,
1972.

T. Skolem. Diophantische Gleichungen, volume 5 of Ergebnisse der Mathematik und
ihrer Grenzgebiete. 1938.

A. M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, Series 2, 42:
230–265, 1936. Errata in ibidem, 43 (1937):544–546.

S. A. Vavasis. Polynomial time weak approximation algorithms for quadratic pro-
gramming. In Pardalos (1993).

S. Verdoolaege. barvinok. Available from URL http://freshmeat.net/projects/

barvinok/, 2007.

106

http://freshmeat.net/projects/barvinok/
http://freshmeat.net/projects/barvinok/

Bibliography

S. Verdoolaege and K. M. Woods. Counting with rational generating functions. J.
Symb. Comput., 43(2):75–91, 2008. ISSN 0747-7171. doi: http://dx.doi.org/10.
1016/j.jsc.2007.07.007.

K. Woods. Rational Generating Functions and Lattice Point Sets. PhD thesis, Uni-
versity of Michigan, 2004.

107

	Introduction and Preliminaries
	Integer Optimization Problems and Their Complexity
	Presentation of the problem
	Encoding issues for solutions
	Approximation algorithms and schemes
	Incomputability
	Hardness and inapproximability

	Introduction to generating functions

	Tools from the Geometry of Numbers
	Minkowski's 1st theorem
	Packing, covering, shortest vectors
	Flatness for ellipsoids
	Approximation of convex bodies by ellipsoids
	Flatness of convex bodies
	Algorithms

	Barvinok's short rational generating functions
	Dimension two
	Preparation for n dimensions: Decompositions of polyhedra and cones
	Indicator functions and inclusion--exclusion
	Gram--Brianchon and Brion
	Avoiding inclusion--exclusion with half-open decompositions

	Generating functions and the algorithm of Barvinok
	Evaluation (specialization)
	Boolean operations and projections

	Mixed-integer polynomial optimization via the summation method
	The summation method
	FPTAS for optimizing non-negative polynomials over integer points of polytopes
	Extension to mixed-integer optimization via discretization
	Grid approximation results
	Bounding techniques
	Proof

	Extension to polynomials of arbitrary range
	Notes and sources

	Multicriteria mixed-integer optimization
	Introduction
	The rational function encoding of all Pareto optima
	Efficiently listing all Pareto optima
	Selecting a Pareto optimum using polyhedral global criteria
	Selecting a Pareto optimum using non-polyhedral global criteria

	Further applications
	Bibliography

