
Mathematics for Decision Making: An Introduction

Lecture 11

Matthias Köppe

UC Davis, Mathematics

February 10, 2009

11–1

Dijkstra’s Algorithm [1959]

Dijkstra’s Algorithm
Input: A digraph G = (V ,A) with nonnegative arc costs, starting node r
Output: A predecessor vector p, encoding minimum-cost paths from r to all nodes.

1 Initialize y, p.
2 Set S := V .
3 While S 6= ∅:

Choose v ∈ S with yv minimum.
Set S := S \{v}.
Scan vertex v , i.e., do for all arcs (v ,w) ∈ A:

If (v ,w) is incorrect, then correct it, updating predecessor information.

11–2

Dijkstra’s Algorithm: Correctness

We use the notation v1,v2, . . . ,vn for the ordering of the nodes
We denote by y(i) the value of y at the point when vi is chosen to be scanned.

Lemma (Monotonicity of potentials of scanned nodes)

For all i < k we have y (i)
vi ≤ y (k)

vk .

Proof.

Suppose the contrary, i.e., there exist i < k with y (i)
vi > y (k)

vk .

Fix such a i and choose k minimal with this property, i.e., vk is the
earliest-chosen vertex after vi that, at the time of its scanning, had a smaller
potential than the vertex vi at the time of its scanning.

But by the minimal choice in the algorithm, we have y (i)
vi ≤ y (i)

vk .

So yvk must have been lowered while scanning some vertex vj with i < j < k .

This arc correction made y (k)
vk = y (j+1)

vk = y (j)
vj + cvj ,vk .

Because cvj ,vk ≥ 0, we have y (j)
vj ≤ y (k)

vk < y (i)
vi .

This is a contradiction to the definition of k .
11–3

Dijkstra’s Algorithm: Correctness, II

Theorem
Dijkstra’s Algorithm is correct.

Proof.
We prove that, after all vertices have been scanned, we have a feasible potential yn+1:

Suppose not, i.e., for some (vi ,vk) ∈ A, we have y (n+1)
vi + cvi ,vk < y (n+1)

vk .

But directly after scanning vertex vi , we certainly did have y (i+1)
vi + cvi ,vk ≥ y (i+1)

vk .

Since we never increase the potentials, yvi must have been lowered afterwards!
Say, it was lowered the last time when scanning vertex vj (with i < j).

Thus y (i+1)
vi > y (n+1)

vi = y (j+1)
vi = y (j)

vj + cvj ,vi ≥ y (j)
vj

On the other hand, by the Lemma, because vj was scanned after vi , we have

y (j)
vj ≥ y (i)

vi , a contradiction (y (i+1)
vi > y (i)

vi).

11–4

Dijkstra’s Algorithm: Efficiency

Theorem (Efficiency of Dijkstra’s Algorithm)
Dijkstra’s Algorithm terminates after m = |A| arc verification steps.

Let’s try out Dijkstra’s Algorithm in practice; we expect that the running time
essentially only depends, linearly, on the number of arcs.
We try on examples with the same number of arcs, but different numbers of
vertices.
Result: There is a great dependence on the number of vertices, and we are not
happy with the running time for large, sparse graphs (many vertices, few arcs)
Where is the running time spent? Our coarse abstraction of running time
(number of arc verification steps) does not give the answer.
To find this out in the practical program, it is strongly recommended to find this
out by measuring time, rather than thinking or guessing.
Every modern, reasonable programming system has a facility for measuring how
much running time is spent in parts of the program; this is called a (time) profiler.
In the case of C, the GCC toolchain (compiler/linker option -pg) and the gprof
tool provide a (sampling) time profiler.

11–5

Dijkstra’s Algorithm: Efficiency, II

To make refined mathematical statements about the running time of Dijkstra’s
Algorithm, we analyze the algorithm on an abstraction of a computer, which we
call the Random Access Machine (RAM).
Such a machine has a fixed (immutable) program, a central processing unit
with finitely many registers, and direct (indexed by a constant) and indirect
(indexed by the contents of a register) access to infinitely many memory
locations.
Each of the registers and memory locations can store an integer of arbitrary
size.
The running time of a program on the RAM is the number of elementary
operations it executes.

Reading a number from memory into a register
Writing a number from a register to memory
Elementary arithmetic operations (+, −, ×, division with remainder) on registers
Comparing numbers (=, ≤, ≥) in registers
Elementary control flow operations (branches)

In other words, by definition, each of the above elementary operations takes
constant time (1 time unit). Note that this is a dramatic simplification of the running
time of a program on a real computer.

11–6

Dijkstra’s Algorithm: Efficiency, III

We now turn to the refined analysis of Dijkstra’s Algorithm, based on a concrete
implementation of the algorithm on a RAM:

We need to clarify how the input data are presented
We need to decide using which concrete data structures we store the data
We need to clarify several steps of the algorithm

(The same is necessary if we want to create an implementation of the algorithm in
a not-too-high-level programming language such as C.)
We will assume that the digraph (V ,A) is given in the form of an adjacency list,
stored in arrays (i.e., using contiguous memory locations), which allows to

obtain the number of vertices in constant time c1
given a vertex index v , to determine the outdegree δ+(v) (the number of arcs
leaving v) in constant time c2
given a vertex index v and an index i , to determine the endpoint w of the i-th arc
leaving v , and the arc cost cv ,w in constant time c3

We will store the potential vector y and the predecessor vector p as arrays.
Accessing (reading or writing) an element yv or p(v) of these vectors, given a
vertex index v , then takes a constant c4 many elementary operations
We will store the set S as a singly-linked list; this allows to decide
whether S = ∅ in time c5, iterate through the elements in time c6 (per element),
add an element at the front in constant time c7, and delete an element found by
iterating in constant time c8.

11–7

Dijkstra’s Algorithm: Efficiency, IV

We now determine the precise number of elementary operations.
We use the constants ci associated with the data structures, which appeared to
the previous slide.
We use additional constants di to denote the number of elementary operations in
other parts of the program.

Dijkstra’s Algorithm
Input: A digraph G = (V ,A) with nonnegative arc costs, starting node r
Output: A predecessor vector p, encoding minimum-cost paths from r to all nodes.

1 Initialize y, p c1 + d1 + |V |(2c4 + d2) operations
2 Set S := V . d4 + |V |(c7 + d3) operations
3 While S 6= ∅: |V | iterations and (c5 + d5)(|V |+ 1) operations

Choose v ∈ S with yv minimum. d6 + |S|(c4 + c6 + d7) operations
Set S := S \{v}. c8 operations
For all arcs (v ,w) ∈ A: δ+(v) iterations, c2 + δ+(v)c3 operations

If yv + c(v ,w)≤ yw : 2c4 + d8 operations
yw := yv + c(v ,w) c4 operations
p(w) := v c4 operations

11–8

Dijkstra’s Algorithm: Efficiency, V

Adding up everything:

The minimum-finding operation takes d6 + |S|(c4 + c6 + d7) operations, where |S|
starts with |V | and is decreased until it reaches 1. Thus its total time is:

|V |

∑
s=1

(
d6 + |S|(c4 + c6 + d7)

)
= |V |d6 +

|V |(|V |+ 1)

2
(c4 + c6 + d7)

All node-scanning operations (verifying all outgoing arcs) together take

∑
v∈V

(
c2 + δ

+(v)(c3 + 4c4 + d8)
)

= |V |c2 + |A|(c3 + 4c4 + d8)

The remaining operations are easy to account for

Together we obtain
e1|V |2 + e2|V |+ e3|A|+ e4

elementary operations, for some (complicated) constants ei .

For sparse graphs, where |A| � |V |2, the term e1|V |2 is the largest
summand. It comes from the minimum-finding operation!

11–9

Dijkstra’s Algorithm: Efficiency, VI

We are not happy with the complicated analysis (counting of operations, lots of
constants, . . .) we had to do to obtain this result.
Moreover, the constants ei we obtained still depend on the specific RAM we are
using. For instance, on a version of a RAM with few registers, we might need
more elementary operations to do the same thing.
For these reasons, it is useful and convenient to ignore the specific constants
and just ask how does the running time grow for large problems (i.e.,
asymptotically)
We will use the Landau notation for asymptotic growth. Fix a function g(n)≥ 0.

A function f (n)≥ 0 is said to grow (asymptotically) at most with order g(n) if

∃c > 0,n0 ∈ N : ∀n ≥ n0 : f (n)≤ cg(n).

We use the notation f (n) ∈ O(g(n)), this is read as “big oh of g(n)”.
A function f (n)≥ 0 is said to grow (asymptotically) at least with order g(n) if

∃c > 0,n0 ∈ N : ∀n ≥ n0 : f (n)≥ cg(n).

We use the notation f (n) ∈Ω(g(n)), this is read as “big omega of g(n)”.
A function f (n)≥ 0 is said to grow (asymptotically) with order g(n) if
f (n) ∈ O(g(n)) and f (n) ∈Ω(g(n)) (note: different constants are allowed); we write
f (n) ∈Θ(g(n)) (read: “big theta of g(n)”)
Similarly, for functions of several arguments. 11–10

Dijkstra’s Algorithm: Efficiency, VII

Using Big-Oh notation, we obtain that the running time of our RAM
implementation of Dijkstra’s Algorithm is

Θ(|V |2).

In particular, the number of arcs (and thus sparsity) is no longer visible.

A Big-Oh calculus helps to simplify the expressions:
For example, any polynomial function p(n) = ∑

d
i=0 pi ni (with pd 6= 0) is in Θ(nd).

In particular, constants get consumed by higher-order terms
max{f1(n), f2(n)} ∈ O(f1(n) + f2(n))

By keeping in mind that we are only interested in this kind of asymptotic estimate,
we can simplify our counting of elementary operations: We can be “sloppy”, in a
controlled way.

It suffice to determine that some operation is O(1), or Θ(n); we don’t need to discuss
the precise number of iterations.

11–11

Dijkstra’s Algorithm: Efficiency, VIII

We are still not happy with the performance of Dijkstra’s Algorithm for large,
sparse graphs

We have found the reason: Running time is (asymptotically) dominated by the
minimum-finding operation.

A solution is to use better concrete data structures. Here it pays off to use a
binary heap (an implementation of a priority queue) to implement the set S
together with the potential vector y.

A priority queue stores elements v together with a priority yv ; it has operations:
Empty?
Insert and element v with priority yv
Find, remove, and return the element v of smallest priority yv
Find a given element v , and change its priority to y ′v .

The binary heap implementation of this abstract data structure on a RAM has
running time of O(logn) for all of these operations, where n is the number of
elements stored.

11–12

