Mathematics for Decision Making: An Introduction

Lecture 12

Matthias Képpe
UC Davis, Mathematics

February 12, 2009

Dijkstra’s Algorithm: Efficiency, IV

We now determine the precise number of elementary operations.
@ We use the constants ¢; associated with the data structures, which appeared to
the previous slide.
@ We use additional constants d; to denote the number of elementary operations in
other parts of the program.

Dijkstra’s Algorithm

Input: A digraph G = (V, A) with nonnegative arc costs, starting node r

Output: A predecessor vector p, encoding minimum-cost paths from r to all nodes.
@ |Initialize y, p ¢+ di + | V|(2¢c4 + db) operations
Q SetS:=V. ds+ |V|(c7 + d3) operations
@ While S# @ | V| iterations and (cs + d5)(| V| + 1) operations
Choose v € S with y, minimum. ds + | S|(cs + c6 + d7) operations
Set S:= S\ {v}. Ccg operations
For all arcs (v, w) € A: 3 (v) iterations, ¢z + 8™ (v)cs operations
If y, +c(v,w) < yu: 2c¢y4 + dg operations
Yw =Yy +c(v,w) ¢4 operations
p(w) :=v ¢4 operations

12=2

Dijkstra’s Algorithm: Efficiency, V

Adding up everything:

@ The minimum-finding operation takes ds + |S|(cs + cs + d7) operations, where | S|
starts with | V| and is decreased until it reaches 1. Thus its total time is:

[VI(VI+1)

5 (ca+cs+dr)

V
Z d5+|S| C4+Cs+d7)) = |V|d6+

@ All node-scanning operations (verifying all outgoing arcs) together take

Y (c2+8%(v)(cs+4ca+ds)) = |V|ca+ |Al(cs +4cs + 0)
veV
@ The remaining operations are easy to account for
@ Together we obtain
(=] | V|2 + 62| V| + 63|A| +e4
elementary operations, for some (complicated) constants e;.

o For sparse graphs, where |A| < |V|2, the term e;|V|? is the largest
summand. It comes from the minimum-finding operation!

12-3

Dijkstra’s Algorithm: Efficiency, VI

@ We are not happy with the complicated analysis (counting of operations, lots of
constants, ...) we had to do to obtain this result.

@ Moreover, the constants e; we obtained still depend on the specific RAM we are
using. For instance, on a version of a RAM with few registers, we might need
more elementary operations to do the same thing.

@ For these reasons, it is useful and convenient to ignore the specific constants
and just ask how does the running time grow for large problems (i.e.,
asymptotically)

@ We will use the Landau notation for asymptotic growth. Fix a function g(n) > 0.

e A function f(n) > 0 is said to grow (asymptotically) at most with order g(n) if

de>0,ng € N:Vn> ng : f(n) < cg(n).
We use the notation f(n) € O(g(n)), this is read as “big oh of g(n)”.
e A function f(n) > 0 is said to grow (asymptotically) at least with order g(n) if
dc>0,np €N:Vn> ng : f(n) > cg(n).

We use the notation f(n) € Q(g(n)), this is read as “big omega of g(n)".

e A function f(n) > 0 is said to grow (asymptotically) with order g(n) if
f(n) € O(g(n)) and f(n) € Q(g(n)) (note: different constants are allowed); we write
f(n) € ©(g(n)) (read: “big theta of g(n)”)

o Similarly, for functions of several arguments. 124

Dijkstra’s Algorithm: Efficiency, VII

@ Using Big-Oh notation, we obtain that the running time of our RAM
implementation of Dijkstra’s Algorithm is

O(V[?).

In particular, the number of arcs (and thus sparsity) is no longer visible.

@ A Big-Oh calculus helps to simplify the expressions:

o For example, any polynomial function p(n) = Z,q:o pin' (with py # 0) is in ©(n9).
o In particular, constants get consumed by higher-order terms
e max{fi(n),k(n)} € O(fi(n) + f(n))

@ By keeping in mind that we are only interested in this kind of asymptotic estimate,
we can simplify our counting of elementary operations: We can be “sloppy”, in a
controlled way.

e It suffice to determine that some operation is O(1), or ©(n); we don't need to discuss
the precise number of iterations.

12-5

Dijkstra’s Algorithm: Efficiency, Vlla

We now revisit the analysis of Dijkstra’s Algorithm, and use Big-Oh estimates for the
number of elementary operations, rather than the precise numbers.

Dijkstra’s Algorithm

Input: A digraph G = (V, A) with nonnegative arc costs, starting node r

Output: A predecessor vector p, encoding minimum-cost paths from r to all nodes.
@ |Initialize y, p O(|V|) operations
Q SetS:=V. O(|V|) operations
@ While S # o: O(|V|) iterations and O(|V|) operations
Choose v € S with y, minimum. O(|S]) € O(|V|) operations
Set S:= S\ {v}. O(1) operations
For all arcs (v, w) € A: O(8%(v)) iterations, O(&%(v)) operations
If y, +c(v,w) < yu: O(1) operations
Yo i =yv+c(v,w) O(1) operations
p(w):=v O(1) operations

v

Now we immediately see that we have O(|V|? +|A|) = O(|V|?) elementary operations
in total.

12-6

Dijkstra’s Algorithm: Efficiency, VI

@ We are still not happy with the performance of Dijkstra’s Algorithm for large,
sparse graphs

@ We have found the reason: Running time is (asymptotically) dominated by the
minimum-finding operation.

@ A solution is to use better concrete data structures. Here it pays off to use a
binary heap (an implementation of a priority queue) to implement the set S
together with the potential vector y.

@ A priority queue stores elements v together with a priority y, ; it has operations:

Empty?
Insert and element v with priority y,

o
o
e Find, remove, and return the element v of smallest priority y,
e Find a given element v, and change its priority to y,,.

@ The binary heap implementation of this abstract data structure on a RAM has
running time of O(log n) for all of these operations, where n is the number of
elements stored.

Dijkstra’s Algorithm with Binary Heaps: Efficiency

We now revisit the analysis of Dijkstra’s Algorithm, using binary heaps.

Dijkstra’s Algorithm

Input: A digraph G = (V, A) with nonnegative arc costs, starting node r
Output: A predecessor vector p, encoding minimum-cost paths from r to all nodes.
@ |Initialize y, p O(|V|) operations
@ Initialize a binary heap S := V with priorities y. O(|V|) operations
@ While S # @ O(]V|) iterations and O(|V|) operations
Choose v € S with y, minimum O(log|S]) C O(log | V|) operations
and S:= S\ {v}.
For all arcs (v, w) € A: O(8™(v)) iterations, O(8%(v)) operations
If y, +c(v,w) < yu: O(1) operations
Yw =Yy +c(v,w) O(log|S|) € O(log|V|) operations
and update the priority of w in S
p(w) :=v O(1) operations

In total: O(|V|log|V|+ |A|log|V|) elementary operations.

12-8

Dijkstra’s Algorithm with Binary Heaps: Efficiency, Il

In total: O(|V|log|V|+ |A|log|V|) elementary operations.
Under the natural assumption that |A| > |V| =1 (no isolated vertices), we can write
this as: O(|A|log|V]).

@ For a very dense graph with |A] € ©(]V|?), we would get a running time estimate
of O(]V|2log|V|) — this is worse than the old implementation without binary
heaps!

@ However, already for slightly sparser graphs with |A| € O(|V|?/log|V]), the
running time estimate is O(|V|?), which is the same as the old implementation.

@ The sparser the graph, the better! In particular, for very sparse graphs with
|A| € O(]V|), the running time estimate is O(| V|log |V|), which is much better
than the old implementation.

A straight-forward implementation of Dijkstra’s Algorithm with binary heaps easily
solves problems examples such as with 70,000 vertices and 300,000 arcs in less than
10 seconds.

12-9

