
Mathematics for Decision Making: An Introduction

Lecture 12

Matthias Köppe

UC Davis, Mathematics

February 12, 2009

12–1

Dijkstra’s Algorithm: Efficiency, IV

We now determine the precise number of elementary operations.
We use the constants ci associated with the data structures, which appeared to
the previous slide.
We use additional constants di to denote the number of elementary operations in
other parts of the program.

Dijkstra’s Algorithm
Input: A digraph G = (V ,A) with nonnegative arc costs, starting node r
Output: A predecessor vector p, encoding minimum-cost paths from r to all nodes.

1 Initialize y, p c1 + d1 + |V |(2c4 + d2) operations
2 Set S := V . d4 + |V |(c7 + d3) operations
3 While S 6= ∅: |V | iterations and (c5 + d5)(|V |+ 1) operations

Choose v ∈ S with yv minimum. d6 + |S|(c4 + c6 + d7) operations
Set S := S \{v}. c8 operations
For all arcs (v ,w) ∈ A: δ+(v) iterations, c2 + δ+(v)c3 operations

If yv + c(v ,w)≤ yw : 2c4 + d8 operations
yw := yv + c(v ,w) c4 operations
p(w) := v c4 operations

12–2

Dijkstra’s Algorithm: Efficiency, V

Adding up everything:

The minimum-finding operation takes d6 + |S|(c4 + c6 + d7) operations, where |S|
starts with |V | and is decreased until it reaches 1. Thus its total time is:

|V |

∑
s=1

(
d6 + |S|(c4 + c6 + d7)

)
= |V |d6 +

|V |(|V |+ 1)

2
(c4 + c6 + d7)

All node-scanning operations (verifying all outgoing arcs) together take

∑
v∈V

(
c2 + δ

+(v)(c3 + 4c4 + d8)
)

= |V |c2 + |A|(c3 + 4c4 + d8)

The remaining operations are easy to account for

Together we obtain
e1|V |2 + e2|V |+ e3|A|+ e4

elementary operations, for some (complicated) constants ei .

For sparse graphs, where |A| � |V |2, the term e1|V |2 is the largest
summand. It comes from the minimum-finding operation!

12–3

Dijkstra’s Algorithm: Efficiency, VI

We are not happy with the complicated analysis (counting of operations, lots of
constants, . . .) we had to do to obtain this result.
Moreover, the constants ei we obtained still depend on the specific RAM we are
using. For instance, on a version of a RAM with few registers, we might need
more elementary operations to do the same thing.
For these reasons, it is useful and convenient to ignore the specific constants
and just ask how does the running time grow for large problems (i.e.,
asymptotically)
We will use the Landau notation for asymptotic growth. Fix a function g(n)≥ 0.

A function f (n)≥ 0 is said to grow (asymptotically) at most with order g(n) if

∃c > 0,n0 ∈ N : ∀n ≥ n0 : f (n)≤ cg(n).

We use the notation f (n) ∈ O(g(n)), this is read as “big oh of g(n)”.
A function f (n)≥ 0 is said to grow (asymptotically) at least with order g(n) if

∃c > 0,n0 ∈ N : ∀n ≥ n0 : f (n)≥ cg(n).

We use the notation f (n) ∈Ω(g(n)), this is read as “big omega of g(n)”.
A function f (n)≥ 0 is said to grow (asymptotically) with order g(n) if
f (n) ∈ O(g(n)) and f (n) ∈Ω(g(n)) (note: different constants are allowed); we write
f (n) ∈Θ(g(n)) (read: “big theta of g(n)”)
Similarly, for functions of several arguments. 12–4

Dijkstra’s Algorithm: Efficiency, VII

Using Big-Oh notation, we obtain that the running time of our RAM
implementation of Dijkstra’s Algorithm is

Θ(|V |2).

In particular, the number of arcs (and thus sparsity) is no longer visible.

A Big-Oh calculus helps to simplify the expressions:
For example, any polynomial function p(n) = ∑

d
i=0 pi ni (with pd 6= 0) is in Θ(nd).

In particular, constants get consumed by higher-order terms
max{f1(n), f2(n)} ∈ O(f1(n) + f2(n))

By keeping in mind that we are only interested in this kind of asymptotic estimate,
we can simplify our counting of elementary operations: We can be “sloppy”, in a
controlled way.

It suffice to determine that some operation is O(1), or Θ(n); we don’t need to discuss
the precise number of iterations.

12–5

Dijkstra’s Algorithm: Efficiency, VIIa

We now revisit the analysis of Dijkstra’s Algorithm, and use Big-Oh estimates for the
number of elementary operations, rather than the precise numbers.

Dijkstra’s Algorithm
Input: A digraph G = (V ,A) with nonnegative arc costs, starting node r
Output: A predecessor vector p, encoding minimum-cost paths from r to all nodes.

1 Initialize y, p O(|V |) operations
2 Set S := V . O(|V |) operations
3 While S 6= ∅: O(|V |) iterations and O(|V |) operations

Choose v ∈ S with yv minimum. O(|S|)⊆ O(|V |) operations
Set S := S \{v}. O(1) operations
For all arcs (v ,w) ∈ A: O(δ+(v)) iterations, O(δ+(v)) operations

If yv + c(v ,w)≤ yw : O(1) operations
yw := yv + c(v ,w) O(1) operations
p(w) := v O(1) operations

Now we immediately see that we have O(|V |2 + |A|) = O(|V |2) elementary operations
in total.

12–6

Dijkstra’s Algorithm: Efficiency, VIII

We are still not happy with the performance of Dijkstra’s Algorithm for large,
sparse graphs

We have found the reason: Running time is (asymptotically) dominated by the
minimum-finding operation.

A solution is to use better concrete data structures. Here it pays off to use a
binary heap (an implementation of a priority queue) to implement the set S
together with the potential vector y.

A priority queue stores elements v together with a priority yv ; it has operations:
Empty?
Insert and element v with priority yv
Find, remove, and return the element v of smallest priority yv
Find a given element v , and change its priority to y ′v .

The binary heap implementation of this abstract data structure on a RAM has
running time of O(logn) for all of these operations, where n is the number of
elements stored.

12–7

Dijkstra’s Algorithm with Binary Heaps: Efficiency

We now revisit the analysis of Dijkstra’s Algorithm, using binary heaps.

Dijkstra’s Algorithm
Input: A digraph G = (V ,A) with nonnegative arc costs, starting node r
Output: A predecessor vector p, encoding minimum-cost paths from r to all nodes.

1 Initialize y, p O(|V |) operations
2 Initialize a binary heap S := V with priorities y. O(|V |) operations
3 While S 6= ∅: O(|V |) iterations and O(|V |) operations

Choose v ∈ S with yv minimum O(log |S|)⊆ O(log |V |) operations
and S := S \{v}.

For all arcs (v ,w) ∈ A: O(δ+(v)) iterations, O(δ+(v)) operations
If yv + c(v ,w)≤ yw : O(1) operations

yw := yv + c(v ,w) O(log |S|)⊆ O(log |V |) operations
and update the priority of w in S

p(w) := v O(1) operations

In total: O(|V | log |V |+ |A| log |V |) elementary operations.

12–8

Dijkstra’s Algorithm with Binary Heaps: Efficiency, II

In total: O(|V | log |V |+ |A| log |V |) elementary operations.
Under the natural assumption that |A| ≥ |V |= 1 (no isolated vertices), we can write
this as: O(|A| log |V |).

For a very dense graph with |A| ∈Θ(|V |2), we would get a running time estimate
of O(|V |2 log |V |) – this is worse than the old implementation without binary
heaps!

However, already for slightly sparser graphs with |A| ∈ O(|V |2/ log |V |), the
running time estimate is O(|V |2), which is the same as the old implementation.

The sparser the graph, the better! In particular, for very sparse graphs with
|A| ∈ O(|V |), the running time estimate is O(|V | log |V |), which is much better
than the old implementation.

A straight-forward implementation of Dijkstra’s Algorithm with binary heaps easily
solves problems examples such as with 70,000 vertices and 300,000 arcs in less than
10 seconds.

12–9

